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i SUMMARY

\‘. * ——————————————

ke,

'} The regular (RR) to Mach reflection (MR) transition boundary in
18 pseudostationary flow in air was investigated, with emphasis on the influence

of the shock-induced boundary layer. Nearly 100 experiments were conducted in

? the region of the RR=»MR transition line over a range of incident-shock-wave
D . Mach number 1.1 < MS < 6.5 by conducting experiments in the UTIAS 10 x 18 cm
ﬁ’ Hypervelocity Shock Tube. The wedge angles used were 42 , 45 , 47 , and 48 .
g’ Initial pressures were kept as low as possible to maximize viscous effects and

ranged from 0.4 kPa to 100 kPa. A comparison was made between the

- o

boundary-layer thickness, and the deviation of the transition boundary from

N
b inviscid theory. This difference is often called the 'von Neumann paradox'.
! It was found that the 'von Neumann paradox' was due to viscous effects.
- The deviation of the RR«»MR transition line from the 'detachment' criterion
%
boundary was found to increase with a drop in initial pressure, in a manner
:' consistent with boundary-layer theory. The effect of the endwall boundary H
‘ r
\; layer on the RR«»MR transition line was more pronounced at Tow Mach number
4
(Ms < 2), and a model is proposed to explain this behavior.
i
‘ﬁ Initial pressure was also found to influence the height of the Mach stem
iﬁ in MR. Lower initial pressure (and hence greater viscous effects) reduced the
height of the Mach stem, which was found to be smaller than the inviscid
"j prediction in all MR experiments. An explanation for the reduction in Mach
% stem height is suggested, but the cause was not thoroughly investigated.
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speed of sound in a gas

complex-Mach reflection

Double-Mach reflection

boundary-layer velocity-distribution function
incident shock wave

thermal conductivity

kilopascal

kink, degrees Kelvin

length

horizontal distance from wedge corner

Mach stem

Mach number in region (i)

Mach reflection

pressure in region (i)

reflection point in regular reflection (RR)
Prandtl number

boundary-layer temperature-distribution function
for adiabatic wall

reflected shock wave
second reflected shock wave in double-Mach reflection

boundary-layer temperature-distribution function
for nonadiabatic wall

slipstream or contact surface
single-Mach reflection

time

triple point

second triple point in double-Mach reflection

vi

--------

s‘

|

x; e cLiLxxm; ;Eu&jhkidkai4¢L&:i:j



temperature in region (i)

flow velocity in the x-direction
flow speed in region (i)

flow velocity in the y-direction )
Angstrom

specific heat ratio

angle between the incident and reflected shock waves
boundary-layer thickness based on 99% freestream velocity
boundary-layer displacement thickness

non-dimensional boundary-layer coordinate

boundary-layer flow entry angle

flow-deflection angle through the shock wave when entering
region (i)

maximum possible flow-deflection angle through a shock wave

flow-deflection angle through a shock wave which results in
sonic flow behind shock

characteristic vibrational temperature

wavelength of light

absolute viscosity

kinematic viscosity

density

shear stress, vibrational relaxation time

incidence angle between the flow and shock wave in region (i)
triple-point trajectory angle

second triple-point trajectory angle

stream function

reflected-shock-wave angle !

boundary-layer flow entry angle at nominal distance x = 1 mm




Subscripts

o oo

thermodynamic regions
characteristic
external, freestream
experimental
insulated

relative to kink

max imum

reference, rotational
shock, sonic

relative to triple point
translational
vibrational

wall

Superscripts

e

first-order derivative
second-order derivative

third-order derivative
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Chapter 1

"INTRODUCTION

When e€energy 1is instantaneously released in a material, an explosion
occurs and a shock wave is generated. The shock wave, which causes a sudden
Jump in pressure, temperature, and entropy, travels through the material as a
result of molecular collisions. It loses strength by heating the material and
raising its pressure as it races outward from the center of the explosion, and

ultimately weakens to a sound wave.

If a planar shock wave intersects a wedge surface, Tour different
reflection patterns can occur, depending on the strength of the shock and the
wedge angle. The patterns are regular reflection (RR), single-Mach reflection
(SMR), complex-Mach reflection (CMR), and double-Mach reflection (DMR) (see
Figs. 1 to 4, from Ref. 30). The latter three as a group are called Mach
reflection (MR). The four types have flow fields with different pressure,
density and temperature distributions associated with them. The shock wave
from an above-ground explosion in air would experience several of the

reflection patterns as it intersected the ground on its travel outward [1,28].

There are many examples of both man-made and naturally occurring
shock-wave phenomena {e]l. In several of these, the process of
oblique-shock-wave reflection is of great concern. For example, accurate
prediction of the type of reflection and associated pressures is necessary for
the design of shock-resistant structures. Applications range from chemical

plants, where the potential for major explosions always exists, to mobile

missile launchers which must be able to withstand a nuclear blast [3].




g;g The study of oblique-shock-wave reflections began as far back as 1878
;*SjE when Ernst Mach [4] did research on shock waves and observed RR and MR. In
il spite of this, it was not until the early 1940's that more thorough analytical
‘éi: and experimental work was done. At this time an analytical criterion for the
ﬁﬁg transition from RR to MR in nonstationafy flow (usually referred to as the
i 'detachment' criterion) was suggested by von Neumann [5,6].
R
:;;s: Under the direction of Bleakney [7] a major study of nonstationary
;xﬁ; oblique-shock-wave reflection was carried out at Princeton University. Smith
o [8] did an extensive series of experiments and discovered SMR and CMR, He
ﬂ;;? also found that RR persisted beyond the boundary predicted by the 'detachment'
F;ﬁ criterion. This persistence is often referred to as the 'von Neumann
:55; paradox', Further experimentation by White [9] confirmed this persistence.
$Zi$ White [9] also suggested a criterion fTor the transition from SMR to CMR, and
fiﬁﬁ discovered DMR, thus completing the identification of the four major types of
S oblique-shock-wave reflection, The most current analytical transition
};}; boundaries for inviscid frozen air are shown in Fig. 5.
‘;-' Much work has been done since then in defining the regions of RR, SMR,
.Eii CMR, and DMR. A study by Kawamura and Saito [10] again confirmed the
'iitz persistence of RR into the predicted MR region for nonstationary flows.
j%t’ Gvozdeva et al [11] and Henderson and Lozzi [12] suggested criteria for the
’§§§ transition from SMR to CMR, and CMR to DMR but they were not substantiated.
{%; In the same study, Henderson and Lozzi [12] also offered the 'mechanical
:?ﬂ equilibrium' criterion for transition from RR to MR 1in nonstationary flows.
E Z Bazhenova et al [13] attempted to clarify experimentally the regions of RR, ‘
iwﬁg SMR, CMR, and DMR, but like other studies their range of Mach numbers and 4
‘&f’ wedge angles was limited. Law and Glass [14] did experiments over a wider
1
o 2.
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range, and later Ben-Dor and Glass [15] established the generally accepted
criteria for transition from SMR to CMR and CMR to DMR. A worthwhile
additional necessary criterion for the SMR to CMR transition was later made by

Shirouzu and Glass [16].

The necessary conditions for the transition from RR to MR in
nonstationary flow are still not fully understood. Work by Hornung and

Kychakoff [17] and Hornung, Oertel, and Sandeman [18] brought forth another

hypothesis, the ‘'sonic’ criterion. It is difficult to resolve experimentally
from the 'detachment' criterion, and thus the ‘von Neumann paradox' was still
unsolved. It was suggested by Hornung et al [18] and later investigated by
Hornung and Taylor [19] that the 'von Neumann paradox' was due to the viscous
boundary layer which develops behind the shock on the wedge surface. Shirouzu

and Glass [16] supported this theory but the evidence was still inconclusive.

Hornung and Taylor [19] investigated the influence of viscosity on the
RR«»MR transition boundary by doing experiments in argon. They held Mach
number fixed, and varied the wedge angle to see the behavior of the size of
Mach stem in MR, This was done for various initial pressures. They assumed
transition to RR when the Mach stem size approached zero. Initial pressure

was found to influence the position of the transition boundary.

It was the intent of this work to further explore the effect of the
boundary layer on the RRe«®»MR transition boundary, although from a different
approach than Hornung and Taylor [19]. The approach taken here was to do
experiments in air over a wide range of Mach numbers and initial pressures,

and to find transition boundary points by doing both MR and RR experiments, in

close proximity to the boundary.
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In this investigation, the objectives were:

1. To determine precisely several RRe«»MR transition boundary points

by doing experiments very close to the boundary.

2. To use the lowest pressure possible to maximize viscous effects.

3. To obtain the deviation from inviscid theory of the reflected wave

angle in RR at the RR«»MR transition boundary.

4, To predict the RR=«»MR transition boundary in air for any initial

pressure and incident-shock-wave Mach number.

The present research continues a long program of study of

oblique-shock-wave reflection supervised by Professor I. I. Glass at the

Previous

[14],

University of Toronto Institute for Aerospace Studies (UTIAS).
(211,
Ben-Dor [22], Ben-Dor and Glass [15,23], Ando [24], Ando and Glass
[26], [16],

Deschambault [29], Deschambault and Glass [30], Hu and Glass

Law and Glass

(253,
Hu and Shirouzu [27], Hu [281,

researchers include Molder [20], MWeynants

Lee
and Glass Shirouzu and Glass
[31,32] and Li

and Glass [33].
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Chapter 2

DESCRIPTION OF OBLIQUE-SHOCK-WAVE REFLECTION

In this chapter, the types of reflection and conditions associated with
each are discussed for inviscid flow. The effects of viscosity on shock-wave

reflection are treated in Chapter 3.

2.1 Dynamics of Oblique-Shock-Wave Reflection

When a shock wave passes over a wedge in a shock tube, two simultaneous
processes occur [15]:
(a) deflection of the flow at the wedge corner, and

(b) reflection of the incident shock wave from the wedge surface.

The first of these, deflection at the corner, can take place via
supersonic turning through an attached oblique shock wave (Fig. 6a,b), or
subsonic turning with a detached shock wave (Fig. 6¢c). In the attached shock
wave cases, the shock will be straight if the flow behind it is supersonic
(Fig. 6a), or curved if the flow behind it 1is subsonic (Fig. 6b). The

necessary conditions for each configuration are obtained from gasdynamics[34].

The reflection process can take place via RR, SMR, CMR, or DMR, The
speed of the incident shock wave is constant. While there is some attenuation
of the shock wave with time due to the wall boundary layer [36], it is not
significant over very short wedge distances. The flow 1is pseudostationary,
and consequently a frame of reference can be attached to the reflection point
P in RR and the triple point T in MR, It can also be made self-similar by
transforming the independent variables from x,y, and t to x/t and y/t [35].
Self-similarity makes the shock pattern and the flow-property distributions

retain identical shapes, but increase in size linearly with time,

.............
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2.2 Types of Obligue-Shock-Wave Reflection

2.2.1 Regular Reflection (RR)

Regular reflection is shown schematically in Fig. 7. It is the simplest
of the four types of reflection since it has only an incident shock wave [ and
a reflected shock wave R. The flow at reflection point P must remain parallel
to the wedge. Therefore, the flow deflection through R must be equal and

opposite to the deflection through I. This can be expressed as:
8, - 6, =0 (2.1)

There are actually two possible solutions for the reflected-shock-wave angle,
a strong and weak solution [34]. The weak solution is the only one which is
usually found in practice. The simplicity of the shock configuration makes
calculation of the flow properties fairly easy. Appendix A contains a

description of the method of solution used by Hu and Shirouzu [27].

The reflected wave can be straight or curved near P depending upon the
Mach number of the flow M2 in region 2. If the flow in region 2 is
supersonic, M2 > 1, relative to P, the reflected wave must be straight since
disturbances from the wedge corner can not propagate toward P (Fig. 8a). For
subsonic flow, M2 < 1, in region 2 relative to P, R will be curved (Fig. 8b)

since disturbances are propagated from the corner to affect it.
2.2.2 Mach Reflection (MR)

Mach reflection is characterized by the appearance of a Mach stem M, and
slipstream S (see Figs. 9 through 11). The necessary condition that flow
remain parallel to the wedge surface 1implies that the Mach stem must be

perpendicular to the wedge surface. The Mach stem often has some curvature

[16], but is usually approximated as being straight for some analyses.




- e

Consider the flow in the vicinity of triple point T. The flow can follow
two paths; the first through regions 0, 1, and 2, and the second through
regions 0 and 3. Recions 2 and 3 are separated by a contact surface or
slipstream S. Across S, the pressures and flow direction must be equal, and
the density, temperature, and entropy can differ. The boundary conditions are

- therefore:

(2.2)
Py = P3 (2.3)

As mentioned previously, the flow at T can be considered
pseudostationary, thus X remains constant as the shock travels up the wedge.
The solution of MR 1is somewhat more difficult than for RR. Appendix A
outlines the method of solution by Hu and Shirouzu [27], which also contains
RR and MR solutions for a wide range of Mach number and wedge angle for

various gases.
The unique properties of each type of Mach reflection are now described.
2.2.2.1 Single-Mach Reflection (SMR)

A schematic diagram of SMR is shown in Fig. 9. In SMR, wunlike CMR and
DMR, the reflected shock R is continuously curved from the triple point T to

the wedge corner since the flow in region 2 is subsonic relative to T,
2.2.2.2 Complex-Mach Reflection (CMR)

Figure 10 shows a schematic diagram of CMR, which differs from SMR due to
the appearance of a kink K in the reflected shock. The kink arises from a

band of compression waves which converge on to the reflected shock at K [12].
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A The flow in region 2 is supersonic relative to T for CMR and DMR, and the

N reflected shock there is straight.

2.2.2.3 Double-Mach Reflection (DMR)

™,
“5 Figure 11 shows a schematic diagram of DMR, which differs from CMR due to
&
'H the appearance of an additional Mach shock (stem) M' and slipstream S' at a
5%? new triple point T' (what used to be the kink K in CMR). The pattern of shock
‘:§: waves and slipstream 1is the same for both T and T'. By applying the
. ~" "
L -
Uil gasdynamics equations in the same manner as for the solution at T, the flow
o velocities and states can also be solved for at T' [27].
;-:7:
)."
" 2.3 Transition Criteria
‘Y
B
oy 2.3.1 RR«»MR Transition
\'.
itl Several different criteria have been proposed for the transition from RR
Wwh
to MR. Each of these is now described.
_,)
"k: 2.3.1.1 ‘'Detachment' Criterion
.5_{
: The 'detachment' criterion was proposed by von Neumann [5,6]. It stated
‘-.
::} that transition would occur when the flow deflection through the incident
() *P‘.
.:§ shock exceeded the maximum deflection possible, 8om? through the reflected
~
't
y shock (Fig. 7).
' N
S 6, - 8, =0 (2.4)
yj; 1 2m
AN
= At this point, the boundary condition of tangential flow at the wedge surface
i:% could no longer be satisfied with a RR or 'two-shock' configuration, and MR,
.
;(j a 'three-shock' configuration, would be necessary. This boundary is shown in
" Fig. 12.
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Consider the shock polar [34] in Fig. 13, The shock polar is for a
constant Mach number M0 in region 0. The 'incident shock' curve represents
all possible flow-pressure ratios in region 1 arising from a flow deflection
e through an  incident shock. Curves R1 to R5 represent possible
flow-pressure ratios in region 2 after a deflection 02 through a reflected
shock R. The 'Mach stem' curve represents possible states in region 3 arising
from the flow through a Mach stem in MR, If any of the curves, Rl to R5,
intersect the ordinate axis, RR is possible since the condition of no net
deflection at the wedge surface is satisfied (Eq. 2.1). If any of the curves,
Rl to R5, intersects the 'Mach stem' curve, then MR is possible, since the

necessary conditions of equal pressure and flow direction in regions 2 and 3

are satisfied (Eqs. 2.2 and 2.3).
Five separate cases are represented by R1 to R5:

Rl1: Only RR is possible -- point a

R2: RR and MR possible ~- point b
No net deflection, therefore x is equal to zero
for MR (Fig. 9)

R3: RR (pt. f) and MR (pt. c¢) both possible

R4: RR (pt. g) and MR (pt. d) both possible
Limit of RR reached

R5: Only MR 1is possible -- point e

The 'detachment' criterion states that as the wedge angle 1is decreased,
the flow will follow path a-b-f-g (RR) and then jump back to d (MR). In
effect it states that as wedge angle is decreased, with M0 constant, RR will
be maintained until it is no longer physically possible, and only then will MR
occur, It should be noted that the jump from g to d has a sudden drop in

pressure,
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2.3.1.2 'Mechanical Equilibrium' Criterion

The ‘mechanical equilibrium' criterion, which was proposed by Henderson
and Lozzi [12], is shown in Fig. 12 for frozen air. They investigated the
RR«>»MR transition boundary in unsteady flow by reflecting shock waves from
concave and convex wedge surfaces. During transition, both from RR to MR and
MR to RR, neither unsteady expansion waves nor compression waves were seen,
Some hysteresis was noted depending on whether transition was from RR to MR or
MR to RR. Henderson and Lozzi [12] argued that the absence of unsteady
expansion or compression waves implied that the transition process was steady,
in 'mechanical equilibrium'. This criterion for transition was extended to
the pseudosteady case, even though their experiments with flat wedge surfaces
showed persistence of RR below the ‘'detachment' criterion boundary. These
points which persisted into the MR region were presumed to be MR with Mach

stems so small that they could not be seen.

On the shock polar diagram (Fig. 13) the 'mechanical equilibrium'
criterion 1is vrepresented by path a-b-c-d-e. Beginning at point a, as wedge
angle is decreased the solution will continue to be one of RR. When point b
is reached however, both RR and MR are possible. According to the criterion,
points lying immediately on either side of the transition boundary should have
the same flow-pressure ratio. Therefore, as wedge angle is further decreased,
MR occurs and the flow is represented by points between b and c. As wedge

angle is further decreased, the path goes to d and e.

At transition (point b):

6y ~ 0y = 03 =0 (2.5)
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By comparison, the 'detachment' criterion states that at b, when the wedge
angle 1is further reduced, the flow remains as RR until point g is reached.
Further reduction in wedge angle causes 'detachment' to occur and there is an

immediate jump to point d, along with a sudden decrease in pressure ratio.

Many experimenters have shown RR to persist below the 'detachment'
criterion boundary, which 1is well away from the 'mechanical equilibrium’
boundary (Fig. 12). Some of Smith's data [8], which are quite extensive,
clearly show the persistence of RR (Fig. 14). Some more recent data from
Deschambault [29], which cover a wider range of Mach number, are shown in
Fig. 15. It 1is the 'detachment' criterion that is now universally accepted

for pseudostationary oblique-shock-wave reflection.

2.3.1.3 'Sonic' Criterion

Hornung and Kychakoff [17] and Hornung, Oertel, and Sandeman [18]
proposed yet another theory, the 'sonic' criterion., From a physical point of
view, they suggested that for a Mach stem to form, a length scale would have
to arise as a result of signals transmitted from the wedge corner. For this
to occur, the flow in region 2 relative to P in RR must be subsonic. This

transition criterion is best expressed as:

Gy = fipg = 0 (2.6)

The boundary for this criterion is very close to that predicted by the
'detachment' criterion since the flow detachment angle ? and the sonic angle
differ by only one or two degrees [34], and a resolution between the two

is difficult to achieve experimentally.

Hornung et al [18] also hypothesized that the persistence of RR beyond

the 'sonic' criterion boundary was due to the viscous boundary layer that is
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Q induced behind the shock waves. Hornung and Taylor [19] later demonstrated
SS that the transition boundary was affected by changes in initial pressure, in
1
b a vrelationship consistent with boundary-layer theory. However, their
oY experiments were only for one particular Mach number in argon. A greater
]
Hﬁ:§ discussion of their work can be found in Chapter 3.
s
A For the case of frozen air, a computer program was written to find the
;Q:i RR«-»MR transition boundary for any of the three transition criteria. This
ot
h *é program is listed in Appendix B. The program contains provision for viscous
effects, and can be easily modified to solve for any frozen gas. Its small
fﬁf; size and simple construction makes it adaptable to microcomputers.
R o
;23
e 2.3.2 SMR=»CMR Transition
c'
:}i: The existence of CMR was first noticed by White [9] to occur when the
‘iﬁﬁ' Mach number 1in region 2 relative to the triple point was greater than one.
o
This implies that transition may occur when:
f..-:'_.-
;J;:.-I. M = 1 (2-7)
PR 2T
3
EN
i A mechanism for the transition was proposed by Henderson and Lozzi [12] in
T:fs terms of a band of compression waves. Law and Glass [14] and Ben-Dor and
o
.:ﬁ; Glass [15] verified that transition occurs according to Egq. 2.7. Law and
\.\t
= Glass [14] also predicted the location of the kink with the equation:
::::::
'_'_:'_'::
o where LT / LK is the ratio of the horizontal distance from the wedge corner of
o 4
:{jij T and K respectively (Fig. 16). Bazhenova et al [13], Ando and Glass [25],
N
~5jﬁ and Deschambault [29] found that this expression was not valid near the
RRewMR boundary. They showed experimentally that the ratio approached unity.
R
o
v
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An additional necessary criterion was added by Shirouzu and Glass [16];
that the angle between the incident and reflected shocks, &, must exceed 90
degrees.

s > 90° (2.9)

This has been verified experimentally by Hu [28].
2.3.3 CMR=»DMR Transition

Henderson and Lozzi [12] hypothesized that transition from CMR to ODMR
occurred when compression waves converged to form the second Mach stem, M'
(Fig. 11). Supporting this idea, Law and Glass [14] and Ben-Dor and Glass
[15] showed experimentally that transition occurred when the Mach number in

region 2 relative to the kink equalled one:

M, =1 (2.10)
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Chapter 3

INFLUENCE OF VIBRATIONAL EXCITATION AND VISCOSITY

3.1 Vibrational Excitation

At room temperatures, air behaves as a frozen gas. Only translational
and rotational degrees of freedom are excited. For this frozen or perfect
state, the specific heat ratio, y, 1is constant, and the Rankine-Hugoniot

relations (Ref. 34) can be applied for flow across a shock wave.

At high temperatures, occurring behind a strong shock wave, real-gas
effects come into play. Vibrational excitation, dissociation, and ionization
may be present, Dissociation and ionization occur only for very high Mach
numbers [26], well outside the range of experiments in this study. As such,

they will not be considered further.

To determine the effect of vibrational excitation, two things must be
considered; the magnitude of excitation at equilibrium, and the rate at which

equilibrium is approached.
3.1.1 Effect on the RR«=MR Boundary

At equilibrium, the extent of vibrational excitation depends only on
temperature (see App. C). However, the relaxation Tlength to equilibrium
depends on the temperature and pressure of the gas. Oxygen is excited at a
lower  temperature than nitrogen. The effect of excitation of either
constituent on the RR=s=MR boundary is to lower 1t, as shown in Fig, 17. It
can be seen that the maximum effect of oxygen excitation occurs at MS ~ 6, and
the maximum effect of oxygen and nitrogen excitation occurs at MS ~ 10, It
was approximated that air consists of 20: oxygen and 80% nitrogen. A more

detailed description of vibrational relaxation is contained in Appendix C.
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For vibrational equilibrium, the flow across a shock wave does not have
a closed-form solution as does a frozen flow, It must be solved numerically
using the equations of continuity, momentum, energy, and the equation of

state,

3.1.2 Role of Relaxation Length

Upon passing through a shock wave, the translational and rotational
degrees of freedom are fully excited within a few mean free paths, the
thickness of the shock. The vibrational degrees of freedom take much longer
to reach equilibrium. The size of the relaxation zone is dependent on

temperature and pressure (App. C).

To determine whether an assumption of frozen or equilibrium flow is
appropriate, the relaxation length must be compared to a characteristic length
of the region being studied behind the shock wave. If the relaxation length
is much greater than the characteristic length, then the flow in the region of
interest is in essence frozen. Conversely, if the relaxation length 1is much
smaller than the characteristic length, then an assumption of equilibrium flow
is more appropriate. Flows are considered in nonequilibrium where the
relaxation length is of comparable size to the characteristic length, and must

be treated in a more precise way.

3.2 Influence of Viscosity

3.2.1 Characteristics of Shock-Wave-Induced Boundary Layer

When a shock wave passes over a surface, it induces a velocity in the air
behind the shock [36]. A boundary layer grows behind the shock wave, due to
the friction between the moving air and the stationary wedge surface., This

boundary  layer has a significant efrfect on the flow at the
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shock-wave-reflection point P. In a laboratory-fixed frame of reference, the
flow velocity at the wall must be zero (Fig. 18a). It is convenient though,
to attach the reference frame to the point where the shock intersects the
surface (Fig. 18b). In this reference frame, the flow velocity at the wall
must be that of the wall, relative to the shock. It should be noted that in
this new shock-fixed reference frame, the boundary-layer displacement
thickness, &*, has a negative value, or the wall acts as a sink. Instead of
impeding the flow, the shear stress at the wall tends to 'sweep' the flow away

from the shock wave.

The boundary-layer profile can be calculated by solving the transformed
laminar-boundary-layer equations outlined by Mirels [37,38]. It will be shown
later that the assumption of 1laminar flow 1is appropriate, based on the
Reynolds number of the experiments performed. A summary of the equations used
and method of solution 1is contained in Appendices D and E. Normalized
velocity and temperature profiles are shown 1in Figs. 19 and 20 for the
boundary layer behind a shock wave travelling at MS = 2.0, at Po = 2 kPa and
TO = 300 K. While the boundary-layer size is significantly affected by
pressure, and to a lesser extent by temperature (see App. D), the shape of the
profiles is scarcely influenced by either. Very rapid changes in velocity and
temperature occur close to the wall. Half of the total change in velocity and
temperature within the boundary layer occurs in the first 12% nearest the
wall, It is interesting to note that the temperature and velocity profiles

are quite similar, but at the outer edge of the boundary layer, the normalized

temperature only reaches 0.98 compared to the normalized velocity of 0.99,

The most important thing about the equations is the dependence of the

various size parameters on density or initial pressure, and the variation of

boundary-layer size with distance from the shock wave.




bre 22,

The relationships are:
* 3
§, § =« x (3.1a)
S, 8% « p-é or p-% (3.1b)

This implies that if shock-wave reflection is influenced by viscous effects
for a given gas, Mach number MS and wedge angle 6, are not sufficient to
define the flow; initial pressure or density must also be specified. While
viscosity may not have a great influence where the Reynolds number is high
(high initial pressures), many shock-tube experiments are done at very low
initial pressures where viscous effects are important.
3.2.2 Physical Model of the Reflection Process in RR with a
Shock-Wave-Induced Boundary Layer

As noted before, many researchers have found significant differences
between experiment and the 'detachment' criterion boundary, the ‘von Neumann
paradox' (Figs. 14 and 15). While this differcnce is one indication of
possible viscous effects, additional information is gained by looking at the
reflected wave angle in RR. If the wave angles near the reflection point P
are measured off photographs from RR experiments, and the flow deflections
through them calculated using the Rankine-Hugoniot equations, it is found that
the flow deflection through the reflected wave R is naot equal and opposite to
that through the incident wave I. This difference in angles is defined as the

displacement wedge angle, and is written as:

01 - 02 = 04 (3.2)

and is illustrated in Fig. 21. Displacement wedge angle, od, is a measure of

the deviation of RR experiments from inviscid theory.
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Reflected wave angles «' from RR experiments by Ben-Dor [22] and
Deschambault [29] were obtained by remeasuring the angle & between the
incident and reflected shock waves at a distance of 1 mm from the reflection
point P, and the results for displacement wedge angle by are shown in
Figs. 22 and 23 for ew = 50° and 60° respectively. Error in measurement
should be quite small since the reflected wave R is straight in the vicinity
of the reflection point P for these cases. Figure 22, which is for RR, has
several theoretical curves corresponding to ed =0°, 17, and 2°. The curve
for 8y = 0 extends only up to MS = 1.8, since for Mach numbers greater than
this value and 6 = 50°, RR solutions do not exist. Similarily, for 84 = 17,
there are no RR solutions for 6, = 50° in the range 2.1 < Ms < 3.4. In
Fig. 23, the curves cover the whole range of Mach number since RR solutions

exist for all MS when ew = 60 .

In Fig. 22, where there is a great deal of data, the displacement wedge

angle 84 can be seen to increase as Mach number increases. In the most

extreme case, for Ms = 7.3 and O 50°, the displacement wedge angle 84
exceeds 3°. Concurrent with an increase in Ms’ the experiments had lower
initial pressures, and it is believed that this was the cause of the higher
deviations., It 1is expected that the same phenomenon will influence the

transition boundary. Figure 23 also shows a deviation from the inviscid

prediction, but insufficient data makes trends indeterminate.

In a general sense, for both RR and MR, the boundary layer serves as a
sink. Flow 1is drawn away from the region by the negative displacement
thickness. If the negative thickness is added to the wedge surface to give a
displaced wall, and the result treated as an inviscid approximation to the
viscous flow field, a schematic representation of the physical processes

involved s obtained [19]. This is illustrated in Fig. 24. According to the
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model, an expansion fan exists at the foot of, and behind the 1incident shock

wave, and compression waves subsequently coalesce to form the reflected shock
wave. The compression waves are due to the decrease in rate of growth of the
displacement thickness 6*. The angle at which flow enters the boundary layer
is henceforth referred to as 'boundary-layer flow entry angle’, eb], and its

distribution with respect to x is of the form (see App. D):

(s*/x) xt =, x7} (3.3)

tan( 1

%1) = 1

2
where C1 is a constant based on the flow properties in the freestream,
external to the boundary layer. The variation of 61 with axial distance, as
defined by Eq. 3.3, is shown in Fig. 25 for a typical boundary layer in air,
At x=0, 6y = 90° and the flow enters the boundary layer normal to the surface
(see Fig. 24). At x = lmm, 011 is nearly 0°, and the flow is nearly paraliel
to the surface. While this model gives a qualitative illustration of the flow
processes involved, quantitative information in the immediate vicinity of the
reflection point P can not be obtained from the simple model for the following
reason. The expansion fan right at point P, which turns the flow normal to
the wedge surface, is not an accurate representation of the real process, but
the result of a singularity in the model which occurs at x = 0 (see Eq. 3.3)
Since the distances being dealt with are so small, one must consider the mean
free path of the gas molecules, and whether or not the flow still behaves as
a continuum, As an example, for a RR at MS = 2.0, Pg = 2.0 kPa, and
TO = 300 K, the mean free path of air is calculated to be 2.5 x 10'5 mm based
on region 1 flow Since the concept of a continuum (which the model assumes)
can only be applied over a scale greater than several mean free paths, it is
unwise to believe any quantitative results within this distance of P, The
expansion fan and subsequent compression waves within this distance of P are

therefore probably quite different than what is drawn in the model. Accurate
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3i$§ modelling 1in this region would require kinetic theory which is beyond the
;:%: scope of this work. Note also that the size of these features 1is so small
?;:f that they can not be seen, The model is not based on what is known to occur,
>, but what is believed will occur.
2
ifﬁ It is quite clear from the model that the reflection region 1is very
aff complex. To calculate the growth of the boundary layer, the freestream
;*gi conditions outside the boundary Tlayer must be known. These change with
=:§§ distance from the reflection point however, ranging from region 1 flow
"; properties just behind the incident shock wave, to region 2 flow properties
f&; further downstream. As a simplification, the boundary-layer growth is
:‘:3 calculated assuming constant freestream conditions based on region 1 flow
properties.
7
;Eiz The results for boundary-layer size at a distance of 1 mm from the
:}: reflection point P are shown in Fig., 26. As anticipated, the displacement
e thickness &* is zero for Ms = 1 since there is no flow perturbation behind a
E;;: Mach wave, and & levels off at high M-
'Z” According to the prediction for boundary-layer growth, the boundary-layer
figg flow entry angle €51 will range from 90° at point P, to 0 at x = .
ii% However, only a small region near P should influence the reflection process.
E%A’ The size of this region is the characteristic length of the boundary Tlayer.
;:é? In the case of RR, the characteristic length is taken to be the distance from
%igi the reflection point P at which the experimentally determined displacement
¥l

wedge angle 6q> matches the predicted boundary-layer entry angle © This

e b1*

.:}E characteristic length can be calculated by setting %51 equal to 04 in

EEEE Eq. 3.3, and solving for x. This definition of characteristic length is
;i?: somewhat arbitrary. It is not expected that something unique occurs where 04
§id' and b1 match, but the distance x at which this happens 1is believed to be
\
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representative of the scale of the region of the boundary layer which affects

the reflection process.

3.2.3 Effect of Shock-Wave-Induced Boundary Layer
on the RR«»MR Transition Line

Henderson and Lozzi [12] performed shock-wave-reflection experiments with
a symmetrical wedge in unsteady flow to eliminate any sidewall boundary-layer
effects, and demonstrated that either the 'sonic' or 'detachment' criteria was
correct. As noted previously, it is very difficult to experimentally resolve
the difference between the two criteria. Hornung and Taylor [19] did an
interesting set of experiments in argon to see the effect of initial pressure
on the RRe»MR transition boundary. Using a variable-angle wedge, they did
four series of experiments, each with a different initial pressure. The Mach
number was held constant. In each series, the wedge angle was varied, and
they measured the size of the Mach stem in MR, The point at which the Mach
stem would vanish was extrapolated from each series, and taken to be the point
where transition would occur. The results of the four series showed that the
RR«»MR transition boundary was shifted downward. The magnitude of the shift
was greater when the initial pressure was lower, in a manner consistent with
Eq. 3.1b., Unfortunately, their results were only for one shock-wave Mach

number, Ms = 3,5,

As seen in Figs. 22 and 23, the boundary Tlayer alters the boundary
condition of no net flow deflection at the wall (Eq. 3.2). To predict a new
transition houndary, the 'detachment' criterion might still be used, though in
a modified form. Recall that this c¢riterion stated in principle that
transition would occur when RR was no longer physically possible. At this
point, the maximum possible deflection would occur through the reflected shock

wave, Using this same criterion, but altering the boundary condition at the
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wall (Eq. 2.1), the RR«»MR transition boundary criterion can be written as:

01 = 9o = Oy (3.4)

The effect of various values of B4 ON the transition boundary is shown in
Fig. 27. For each degree of displacement wedge angle, the boundary shifts
downward by approximately 0.7°. The shift in boundary varies linearly with
64 over the range shown. The distribution of «' along the RRe»MR

transition boundary is shown in Fig. 28 for various values of @ The

d!
reflected wave angle ' 1is not affected much by 04 At high Ms’ maximum
shift of w' is obtained, a reduction of «' of 0.44° for every 1° shift in
84 Like the RR«»MR transition boundary, the shift in ' varies linearly

with ed'

It now remains necessary to experimentally determine the deviation of the
RR<«»MR transition boundary from the inviscid 'detachment' criterion boundary,
and to correlate the results with the predicted boundary-layer size. This can

be done by:

(1) conducting experiments to obtain several transition boundary points,

(2) measuring the reflected wave angle ..',

(3) calculating the net flow deflection through the incident and
reflected shock waves to get the displacement wedge angle 04>

(4) equating this Yy value to the predicted distribution of
boundary-layer flow entry angle ©

b1 using Eq. 3.3 to get a

characteristic length.

A look at flow properties of the inviscid RR solution can indicate which

parameters should affect the influence of the boundary layer un the reflection

process, or displacement wedge angle g According to the simplified model of
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Fig. 24, the boundary layer in RR forms in region 1, behind the incident shock

wave. In addition, the reflected shock wave is due to the compressive effects

of the displaced wall which must turn the flow in region 1 back parallel to

this wall. The reflection process 1is therefore dependent on the flow

parameters, Ml’ P> Tl’ 99 in region 1. The boundary layer has been modelled
*

using the displacement thickness &7, which 1is a measure of the increase of

mass flow in the boundary layer relative to the freestream, Displacement

thickness 1s defined at freestream conditions Ml’ Py Tl’ and by using it to
represent the boundary layer, the influence of Py and T1 are accounted for.
The effect of @1 and M1 on the reflection process in the presence of a

boundary layer is still unknown,

The variation of o and M1 with MS is shown in Figs. 29 and 30. It can
be seen that the two parameters are relatively stationary at high Mach number
(MS > 5.0), and change quite rapidly at low Mach number (MS < 3.0). The
boundary-layer displacement thickness 1is also fairly constant for high MS
(Fig. 26). The three parameters which are believed may affect the RRe»MR

transition boundary shift due to viscosity, M 015 and boundary-layer size

19
(for fixed pO) are all approximately constant at high Ms‘ It should therefore
be anticipated that for a fixed initial pressure, the displacement wedge angle

4 and therefore the shift of the RR=»MR transition boundary due to

viscosity, should also be relatively invariant at high Ms' As a result, a

viscous RR=»MR transition boundary should be quite flat at high MS (see

Fig. 27).
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Chapter 4
EXPERIMENTAL WORK

4,1 Shock-Tube Facility

Experiments were carried out in the UTIAS 10cm x 18cm Hypervelocity Shock
Tube. This facility has the capability of both cold-gas driven and
combustion driven runs, However, combustion driven runs were not attempted
owing to the possibility of damaging the test-section windows when operating
with high wedge angle [39]. A full description of the facility and its

capabilities can be found in Boyer [40] and Ben-Dor and Whitten [41].

By increasing the pressure in the compression chamber on one side of a
diaphragm until it ruptured, shock waves were sent down the channel. The
driver gas was added slowly so that after the diaphragm ruptured, the shock
speed would not be influenced during its time of travel by the additional mass
flow. Shock speeds were controlled by varying the type of driver gas, the
diaphragm thickness and pressure ratio across the diaphragm. The diaphragms
consisted of several sheets of mylar polyester stacked together. The sheets
were available in several nominal thicknesses, and by proper combination
nearly any desired thickness could be achieved. There is a practical limit to
the maximum thickness which can be used since very thick diaphragms do not
break properly and their breaking pressure is unpredictable. For this reason,
the maximum overall diaphragm thickness used was 1.07 mm. The driver gases
used were CO2 and He, Shock-wave Mach numbers up to MS = 6.5 were achieved,
While H2 as a driver gas would give even higher shock speeds, the possible
risk of explosion made its use undesirable. For test gas pressure under 26.7
kPa (200 torr), commercially available Medical Grade Air was used. All other

runs used air from the laboratory as the test gas.
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Initial gas temperature was measured by a mercury-bulb thermometer
embedded in the shock tube wall. A minimum of 5 minutes was allowed between
entry of the test gas and reading from the thermometer to allow the
temperature to stabilize. The thermometer scale was marked at 0,1 C

intervals.

The initial gas pressure was measured by a series of Wallace and Tiernan
type FA 160 dial gauges. The range and maximum error of the gauges are shown

below.

Range Absolute Error
1 0 - 50 torr ( 6.67 kPa) 0.2 torr
2. 0 - 200 torr ( 26.7 kPa) 1.0 torr
3 0 - 400 torr ( 53.3 kPa) 2.0 torr
4. 400 - 800 torr (106.7 kPa) 2.0 torr

To guard against possible leakage of air into the shock-tube test section,
test gas pressure was checked at the time of admission, and also 5 minutes
after. Leaks which would cause a variation in pressure of greater than 0.05
torr (6.7 Pa) at the time of firing the shock tube were unacceptable and the
runs were aborted. This corresponds to a leak rate of approximately 0.01

torr/min. and was found to be extremely rare.

The incident-shock-wave speed was determined by measuring the time
interval between a common starting point and several stations distributed down
the channel. Time intervals were measured by 5 digital counters using a 1 MHz
oscillator as a common time base. Trigger signals from each station were
obtained using Atlantic LD-25 blast-wave pressure-transducers. Start signal
for all the counters came from stacion D, and the 5 counters were stopped by

signals from stations F, G, H, I, and J. A schematic diagram of the set-up 1s
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shown in Fig. 31. To allow for deceleration of the shock wave, owing to the
sidewall boundary-layer growth, a second-order best-fit curve was applied to
the measurements from stations F, G, H, and I, and extrapolated to give a
velocity at the center of the test section. The interval at station J was not
used because the shock-wave speed changes significantly after it has passed

over the wedge.

Shock-wave-reflection patterns were recorded using a 23 cm dia.
field-of-view Mach-Zender interferometer. With the exception of 4 experiments
where shadowgraphs were taken, infinite-fringe interferougrams were used. Two
wavelengths were used for the interferograms (3971 A and 6943 &) to establish
both qualitative and quantitative results. The 3971 & interferograms give
twice as many fringes as the 6943 & interferograms, but suffer from lack of
contrast. This type of recording was chosen because it gives a great deal of
quantitative density information, and the presence of fringes makes it easier
to see the Mach stem, even when it is quite small. The 4 shadowgraphs were
taken to compare resolution between them and the interferograms, and were

found to be inferior.

The Tight source for the interferometer was a giant-pulse ruby-laser
incorporating a TRG model 104A laser head, a 7RG model 2113-1 harmonic
generator and TRG Pockels Q-switch. The flashlamp capacitor bank of the laser
and the Q-switch were fired at the appropriate times by delaying the trigger
signa: from stations F and I respectively. The capacitor bank was fired at
900.s before the Q-switch in order to get a single giant pulse from the laser.
In this mode, the laser delivers 0.8 Joules of 1light energy in a 15 ns pulse.
Interferograms were recorded on Kodak Royal-X Pan film, and developed in Kodak
HC-110 developer., The negatives were developed using twice the recommended
time, to increase the effective film speed [nominal speed is 125C ASA, anc

contrast.
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4.2 Range of Experiments

Experiments were done to determine several RR=»MR transition boundary
points., Equipment Tlimitations often determined which initial pressure cou:d
be used. In the low Mach number range (Ms < 1.5), pressures had to be near
atmospheric so that the pressure Jjump across the incident shock wave was
sufficient to trigger the timing equipment and the laser. At very high Mach
numbers (MS < 4.,0), very low initial pressures were needed to achieve
sufficiently high pressure ratios across the diaphragm, but at the same time
must be high enough to trigger the equipment. Low initial pressures are

extremely beneficial since they enhance viscous effects,

Experiments were performed over a range 1.1 < MS < 6.5 using wedges of
42°, 45°, 470, and 48°. Pressures ranged from 400 Pa (3 torr) at high Ms’ to
101 kPa (760 torr) at very low Ms. Typically, to determine a particular
transition boundary point, wedge angle and diaphragm thickness were held
constant. Runs were then done at several different initial pressures. The
Mach number for each run is thus slightly different since the pressure ratio
across the diaphragm is altered. A transition point (po, Ms’ 6 ) 1is thus

W
obtained.

It is a desirable condition to vary the initial pressure, Po> and shock
Mach number, Ms’ for a fixed wedge angle, Bw, particularly when Tooking for
a transition point at high Mach number. As discussed in Chapter 3, for a
constant pressure it is expected that the RR«»MR transition boundary on the
(MS, “w) plane is relatively flat at high MS for Py constant,

Experimentally then, if Py and ty are fixed, and MS varied, one could

conceivably be doing experiments parallel to the transition boundary, but not
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'§hﬁ crossing it. In the low MS region where the inviscid transition boundary is
_S;E quite steep, this problem should not occur.
et
) . It was attempted in one series of experiments (at low Ms) to hold the
Eés initial pressure constant and change the diaphragm thickness to control shock
:}: speed, but it was extremely difficult to find the proper combination of
::;: diaphragms to achieve the required breaking pressure and shock speed Ms’ This
:igi method is not recommended. A variable-angle wedge or plunger to rupture the
.E;f diaphragm at a desired pressure would solve most of these problems, but the
e UTIAS shock tube 1is not equipped for either. If further work in finding
’{iﬁ transition boundary points is to be done, it is highly recommended that both
-:;: mechanisms be used to greatly simplify the experiments.

:j;" 4.3 Measurement of Data from Interferograms

ig; The one drawback to recording shock-wave reflections photographically is
Vo the inevitable problem of interpreting the data. Flaws in the optics and
ii; grain of the film 1imit the resolution of the interferograms, and can make
QE; determination of the type of reflection difficult and subjective. In the case
«)_ of transition from RR to DMR, determination is rather simple. In DMR the two
;ﬁéa Mach stems are separate and distinct, Transition from RR to SMR or CMR s
;Eg often ditficult to see. The Mach stem in MR may be so small that its size is

Arg almost immeasurable, and the fringe disui~rtion caused by the slipstream can be
ii; confused with that caused by the boundary layer.

o

-5 Jne way of separating the two is to look at the shape of the fringe
i:f; distortion, A slipstream should slope toward the wedge surface and distortion
:Sé; from it appear to decrease in size as distance from the Mach stem increases.
o5 A boundary-layer-induced distortion, if visible, should increase 1in size as

distance from the reflection point increases.
-28-
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Measurement of wave angles is also difficult. For optical reasons, the
reflected shock wave appears to have a finite, measurable thickness (Figs. 39a
and 39%). It also appears to be quite 'fuzzy' near the reflection point. It
was found that a precise and accurate measurement of angle could only be made
at distances of 1 mm or greater from the reflection point. The angle between
the incident and reflected shock waves, &, was measured by drawing T1ines
tangent to the incident and reflected shock waves at a distance of lmm from P,
and trigonometrically determining the angle. Both first and second harmonic
photographs were measured independently. If the angles measured from the two
differed by more than 1.5°, they were remeasured until they were within 1.5°.
The wave angle was taken as the average. Wave angles measured by different
people wusing different techniques can differ by as much as 3" and is highly
subjective. For this reason, one should not be too alarmed by different wave

angles quoted for the same pnotograph.
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Chapter 5
DISCUSSION OF RESULTS

In this chapter, the experimental results will be discussed in three

separate and distinct sections:

(1) A gualitative look at some of the features observed of the 4
types of reflection

(2) An analysis of the transition boundary shift obtained, and its
relationship to the boundary Tlayer

(3) A brief ohservation of the effect of the boundary layer on

the Mach stem in MR

5.1 Observed Features RR, SMR, CMR and DMR

Figures 39 through 42 illustrate the four types of reflection obtained,
and reveal some interesting features of the flow. Figures 39a and 39b show a
case of regular reflection (RR). No evidence of a Mach stem or slipstream is
seen at the reflection point P, Some distortion at the wedge surface

indicates the presence of a boundary layer.

There is no physical evidence that the structure of the reflected shock
wave 1is Tlike the physical model in Chapter 3 (Fig. 24). Rapid curvature of
the reflected shock wave near the reflection point 1is not seen (Fig. 39b),
contrary to the model. This would suggest that the size of region which
dominates the reflection process may be smaller than can be seen in the

interferogram, or that the model is inaccurate and a better one is needed.

For this set of experimental conditions, the theoretical, inviscid
solution is that of Mach reflection (MR), with a triple-point-trajectory angle

X = 2.84 ., This 1is shown in Fig. 39a. The difference between theory and
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experiment is particularily notable in this case, since the initial pressure
N is quite high (p0 = 100.8 kPa). With lower pressure, one would expect even

, greater disagreement between theory and experiment.

. Figures 40a and 40b show a case of SMR. The Mach stem is quite evident,
\ \ as 1is the slipstream. Again, the Mach stem is much smaller than the inviscid
prediction. Clearly, the slipstream slopes toward the surface, and it is this
f feature which distinguishes it from the boundary layer. In some cases with an
?K extremely small Mach stem, this is the only way to differentiate between RR

and MR,

, Figures 4la and 41b show a case of CMR, The exact position of the kink
K is not certain due to the apparent thickness of the shocks, but the
curvature reversal is quite clear. It is probable that some cases of CMR were
judged to be SMR., Near the RR<«»MR boundary, the kink is very weak, and it is
likely that in some marginal cases it can not be distinguished, even though it
exists. The slipstream emanating from the triple point slopes down to

: interact with the boundary layer on the wedge surface. Note that this is a

shadowgraph, so fringes do not appear. In one aspect, shadowgraphs are

superior. The shocks tend to appear thinner and more well defined than in

interferograms.

Finally, DMR is shown in Figs. 42a and 42b, Again, as with SMR and CMR,
the triple point does not follow the predicted trajectory. In this case the
difference is quite large (2.8"), likely due to the low initial pressure

(p0 = 1,47 kPa), and the resultant large viscous effects.
5.2 RRa»R Transition Boundary Shift

A summary of the 98 experiments performed is contained in Table 1. ™n

addition, they are plotted in the (MS, ”w) plane for each wedge angle in Figs.
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32 to 38. From the series of experiments, several points were selected which
were felt to represent the limit of RR, transition boundary points. The
selection of transition points from experimental data is often not clear and
as a result subjective. The difficulty comes about in part from the fact that
both Mach number and initial pressure change in a series, a limitation
dictated by the equipment available (see Chapter 4). Ideally, for a fixed
wedge angle, as the initial pressure is dropped the Mach number will increase
gradually. A1l the experiments will be one type of reflection, and then at
some point the type of reflection will change from RR to MR or MR to RR. As
Mach number is further increased the type of reflection would not change back.
In this ideal situation the point of transition is quite distinct. Remember
that a transition point is defined by Ms’ ew, and Po- Although far from
jdeal, this behavior can be seen in Figs. 32, 33, 35a, 35b, and 38, A

transition point is relatively easy to pick.

In Figs. 34, 36, and 37, the transition paint 1is not so clear. The
regions of RR and MR are not distinct from one another, and there is overlap.
The progression of Mach number with decreasing initial pressure is not smooth.
In cases where MR experiments appeared in what was thought to be a RR zone or
vice versa, runs were repeated in an attempt to check their validity.
However, in these three series of experiments, the RR and MR regions could not
be clearly defined. It then became highly subjective in selecting a
transition point. In Fig. 34 there is some overlap but it is not too bad.
Figure 36 bhas quite a great deal of it, and the only portion where RR and MR
are separate and distinct is near MS = 4,0, Fiqure 37 has two RR points in an
apparent MR zone (MS = 4,65, 5.28) but these are not considered valid since
they could not be repeated. Some of the overlap of regions at Tow MS is
undoubtedly due to misjudging of type of reflection. MR runs at low Ms are

very difficult to distinguish from RR. The points which were judged to
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represent the 1imit of RR, or transition, are indicated on each of the figures

and summarized in Table 2.

An additional transition boundary point is taken from experiments by

Deschambault [29]. In a series of experiments at (Ms = 3,71, ew = 49;, Pg ~

6 kPa) he obtained examples of both RR and MR. It was suggested that the RR

. case was actually MR, 1ts Mach stem not having had time to grow sufficiently
to be seen. In the RR case the shock had travelled 60% of the way up the

wedge. In the MR case, the shock had travelled 80% of the way, and had a
triple-point-trajectory angle X = 1.37. If the RR case were actually MR as

suggested, then one might expect that with x = 1.3°, the Mach stem would be

approximately 1.4 mm high at 60% up the wedge surface. A Mach stem of this

size would be quite visible. A more likely explanation for the difference is

that the experiment lies at or very near the RR MR transition boundary.

From an examination of Figs. 35a and 35b, it is quite clear that initial
pressure has an effect on the position of the transition boundary. The two
sets of runs, which have a different range of initial pressures, have
significantly different Mach numbers at transition. The transition point
corresponding to the lower initial pressure has a higher Mach number, which
puts it further from the inviscid transition boundary. This is entirely
expected as viscous effects should be more prominent for cases with Tlower

initial pressure.

The analysis of the transition boundary points will take the following
steps:
3 (1) Comparison of the selected transition boundary points with
the inviscid 'detachment' criterion boundary
(2) Comparison of reflected wave angle ' with that predicted

by the ‘'detachment' criterion
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b
s (3) Reduction of experimentally determined displacement wedge
(’li angle ¢, to a common initial pressure
;iii (4) Comparison of ed to predicted boundary-layer size
g‘ (5) Calculation of characteristic length
:$§ (6) Prediction of a viscous RR«»=MR transition boundary for air y
A‘!‘\":

The selected transition boundary points are plotted against the inviscid 4
i'? ‘detachment' criterion boundary in Figs. 43 and 44, Notice that the deviation
f:?% from the inviscid boundary is mucnh greater at high Ms’ due primarily to low
n initial pressure. The highest deviation from the 'detachment' criterion
i é: boundary is 5.4 in ew’ which occurred for an experiment with ew = 457,
E:;E Ms = 6.21, Pg = 0.45 kPa. This behavior, persistence of RR well below the
E:. 'detachment' criterion boundary at high Ms’ is certainly not applicable to all
;Zf gases. Experiments by Hu [28] in SF6 and Ikui et al [42] in Freon-12 show
iiﬁ persistence of DMR above the 'detachment' criterion boundary at high Ms'
b These two gases are unique since they both have a low specific heat ratio .
é%:% One should therefore be cautious 1in extending the high MS results of this
:E:I investigation in air to other gases without doing a similar analysis.
.~
»{3, In the low M_ regime (Fig. "3), some of the points seem quite close to
;;;? the inviscid boundary, and the difference might be taken as insignificant,
Qii% However, this is not the case. Only the steep slope of the boundary makes the
e differences appear quite small. Note also (Fig. 26) that the boundary layer
Tiiﬁz should also be much smaller at low Ms‘
A
oy It can also be shown that the 'detachment' criterion, which states that
:Iiﬁ transition will occur when the maximum flow deflection possible occurs through
;E&§ the reflected shock wave, still seems to hold under the influence of
s.:,w:: 1
o
A2
o -34-
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viscosity. In Fig 45, measured values of reflected-shock-wave angle ' are

compared to those predicted by a modified 'detachment' criterion (Eq. 3.4).

The variation of reflected-shock-wave angle w' with displacement wedge angle

6, as predicted by Eq. 3.4 is quite small. Experimentally obtained w

d
values are close to the predicted values, within experimental error in
measurement. This implies that the concept of the 'detachment' criterion s

still valid.

Due to experimental limitations, there was a wide variety of initial
pressures. Valid comparison of results requires reduction to some standard.
While it may at first seem desirable to reduce results to a common Reynolds
number, this is not chosen for the following reasons. The boundary-layer size
does not reduce to a simple dependence on Reynolds number (see App. D). Also,

it would be a misleading representation since the only valid length scale,

which is necessary to define a Reynolds number, is the characteristic Tlength

which may not be the same for all the experiments.

Instead it is chosen to reduce the results to a common initial pressure.
From Eq. 3.1b it can be seen that any viscous effect can be scaled by initial
pressure. Figure 46 displays the experimentally determined displacement wedge
angle ed, a result of viscous effects, after reduction to an initial
pressure of 2.0 kPa. Remember that 84 is obtained by applying gasdynamics of
frozen flow to calculate the flow deflection across the incident shock wave
and the measured reflected shock wave. As anticipated, the displacement wedge
angle 64> a measure of departure from the 'detachment' criterion boundary, is
relatively constant at high Ms, with a value of approximately 4°. At low Ms’
bq is higher, near 6.5 . This is an unexpected behavior since the predicted
boundary-layer size is much smaller at low Ms (Fig. 26). The source of

scatter of the two points near MS = 3.8 is unknown,
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To appreciate this difference quantitatively, Fig. 47 shows the ratio
between a predicted boundary-layer size parameter, and the experimentally
determined 6y As a measure of the predicted boundary-layer size, the
boundary-layer flow entry angle Ob] at a distance of 1 mm from the reflection
point P is wused (see Eq. 3.3), and given the special symbol 2. This
3

boundary-layer size parameter, ii , was chosen instead of &*/ x* since it has

the same sense as ed, both being angles. While less fundamental than &* / xé
it is a valid representation, for comparitive purposes, of boundary-layer

3

size, since it is proportional to §* / x°,

Q=0 (5.1)

b]x=1mm

The experimentally determined 84 is much larger than 611 in the predicted
boundary-layer at x =1 mm. This indicates that the characteristic length of
the boundary layer which dominates the reflection process is much 1less than

1 mm.

Since the displacement wedge angle has been determined experimentally,
and the boundary-layer size &% / xé has been predicted, the characteristic
length can be determined by putting the two values into Eq. 3.3 and solving
for x. This has been done and is shown in Fig. 48. The characteristic length
ranges from 0.0025 mm at Tow Ms to 0.048 mm at high Ms‘ With values so small,
it would be impossibie to resolve any features in the region of reflection
point P which is dominated by viscous forces. It is also so small that the
previous assumption of frozen flow and laminar boundary layer in the region of
interest 1is correct. The smallest vibrational relaxation length for the
experiments was found to be 33 mm for O2 in Exp. 62 for which Pg = 0.45 kPa
T0=24.8fC, MS =6.21 (see Fig. C-1). In addition, the maximum Reynolds number

was of the order of 103 based on the characteristic length, much less than
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that at which transition to turbulent flow (105) might be expected to

occur [36].

The inability to see any details of the viscous reflection process near

P demonstrates the necessity for numerical codes which can simulate these

processes. Inviscid numerical simulations of shock-wave reflections currently

- give excellent results [43], as do codes which approximate the effects of
viscosity [51], but a solution of the Navier-Stokes equations very close to

the reflection point P is still a step beyond. However, rapid technological

advancement of supercomputers should make this possible in the near future.

It was shown in Fig. 47 that the ratio of experimentally determined
displacement wedge angle 6d to boundary-layer size parameter Q was much
greater at low Ms' In other words, a boundary-layer of a particular size will

have much more effect on RR at low Ms than at high Ms‘ It is hypothesized

that this ratio should be dependent on flow deflection 84 through the

incident shock wave for the following reason. The ability of a boundary layer
to influence a reflection process should be affected by the relative size of
the forces 1involved. The effect of the boundary-layer 1is that of mass
transfer from the reflection point P. The rate at which mass 1is transferred
toward the wedge surface after deflection through the incident shock wave 1is
proportional to sin(el). If the flow deflection through the incident shock
wave is quite small, then the influence of the boundary layer should be quite
significant compared to the mass transfer towards the wall which gives rise to
the reflection process. At high Ms’ the mass transfer in the boundary layer
is less significant compared to the mass transfer toward the wall, so it has

less effect on RR.
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Figure 49 shows the ratio @ / b4 3 @ function of deflection angle 6
through the incident shock wave. 61 is very close to sin(el). The
relationship appears to be close to linear, as might be expected for the

hypothesis given above.

The net result of all this is a prediction (based on experimental
results) of a viscous RR=»MR transition boundary for air. If a linear
relationship between 2 / o, and sin(el) is assumed (see Fig. 49), and the
result applied to the predicted values of 81 and boundary-layer size parameter
¢ (Eq. 5.1), a distribution of 0y is obtained. When substituted into the
modified 'detachment' criterion (Eq. 3.2) the result 1is a new RRa«»MR
transition boundary. This is shown in Fig.50, for a nominal initial pressure
of 5.0 kPa. Scaling to any other 1initial pressure is simple, since the
difference between the inviscid and viscous boundaries is a direct function of
initial pressure (Eq. 3.1b). Note that Fig. 50 is quite similar to Fig. 27
since the experimental values for 84 were found to be constant at high Ms’

which is precisely what is plotted in Fig. 27, curves of constant 04

5.3 Behavior of X Near RR«»MR Boundary

In the series of experiments for wedge angles of 47~ and 48 , many MR

cases were obtained, with reasonable variation of initial pressure. It is
expected that the boundary layer on the wedge surface will act as a sink and
'pull’ the triple point down toward the wedge. The boundary-layer size, and
presumably its influence, should increase with decreasing initial pressure
(see Eq. 3.1b). The difference between the inviscid prediction of
triple-point-trajectory angle * and the experimentally obtained value should

therefore be affected by initial pressure. This difference is plotted in
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5 Figs. 51 and 52 for two sets of experiments. On each graph, a best-fit curve
'gg of the form:
K Xipy = X =€ + G,y po'é (5.2)
ie
:J is plotted. This form 1is anticipated since the boundary-layer size is
;ﬂ affected by initial pressure or density in that way (see App. D). There is a
o ) fair amount of scatter in the data, but the trend 1is quite «clear. As the
:; initial pressure gets lower, the viscous forces increase and the difference
Vii between the inviscid prediction of X and the experimentally measured value
) increases. Theoretically, as the initial pressure gets extremely large, the
E; viscous forces should become negligible and the solution should approach the
sj inviscid case. Extrapolating the best-fit curves to Pg = = gives:
EEE for o = 48"  x. - X = 0.64
- for 6, = 47° X, - X=-0.95
:j The fact that a non-zero value is obtained may be due in large part to
.55 the scatter of data involved. The scatter itself may be affected by the
x distance up the wedge thal the shock has progressed when the interferogram was
’:5 taken (see below). Hornung and Taylor [19] did 24 experiments, and were able
E to extrapolate their results more closely to the inviscid RReMR transition
i boundary. It is anticipated that if many more experiments were done here, a
E; more accurate curve might be drawn, with less scatter of data.
.
< The influence of the boundary layer on the triple-point-trajectory angle
> x should pe dependent on their proximity to each other. As the Mach stem
f;t grows, it gets further from the boundary layer. If the boundary layer is
fif thought of as a sink, its influence on x should drop off with distance.
3‘ Therefore, as the Mach stem grows, the boundary-layer influence diminishes, so
)
[ N
e
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o8 that the growth of the Mach stem, and therefore x, 1is inherently non-linear
o ¥ with time, The existence of viscosity eliminates the self-similarity that
2N
% exists for the inviscid process. Any comparison of the triple-point trajectory

angle with inviscid predictions should be done with respect to initial pressure
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especially when the initial pressure and x are quite small.
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Chapter 6
CONCLUSIONS

Many RR«»MR  transition boundary points in air were determined

experimentally by performing shock-tube runs very close to the boundary,

Reflected wave angles were found to be consistent with the 'detachment’

. criterion for pseudostationary flow. As anticipated, initial low pressures
enhance viscous effects. As the pressure is lowered, the transition boundary

'von Neumann

shifts downward on the (Ms, ow) plane, giving rise to the
paradox', 1in agreement with many experimenters. Viscous effects have been

found to be the cause of the 'von Meumann paradox'.

By reducing the experimental results to a common initial pressure, a new
viscous RR«»MR transition boundary for air was drawn and found to be in good
agreement with the 100 experiments. The new transition boundary does not
appear to be valid for gases with Tow values of vy such as Freon-12 and SF6 at

high Mach number,

For a given pressure, the boundary layer has a greater effect on the
transition boundary at lower Mach number, even though the physical size of the
boundary layer is smaller. It is hypothesized that the degree of influence is
inversely proportional to flow deflection through the incident shock wave, due
to the relative size of the mass flow toward the wedge surface behind the

incident shock and the mass flow in the boundary layer.

The model used to approximate the influence of viscous forces could not
be substantiated experimentally, and is assumed to be approximate. It did
however indicate that the characteristic length of the flow is of the order of
0.01 mm, and therefore that the assumptions of laminar boundary layer and

frozen flow as used herein were appropriate. It is felt that correct and
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accurate modelling of the reflection process will probably come about through

numerical codes which incorporate the 1influence of wviscosity through a

solution of the Navier-Stokes equations.

While not directly investigated, results from MR experiments demonstrate

that viscosity also affects the size of the Mach stem., Lower initial pressure
reduces the size of the Mach stem, but scatter of the limited data does not
‘E make for a precise quantitative assessment., This 3s one area of study which

should be investigated further,

In the most general sense, viscosity plays a very significant role in
oblique-shock-wave reflection. The Rh-sME transition boundary is lowered a
significant amount (up to 55), and the Mach stem size in MR is reduced.
Previous studies which investigated oblique-shock-wave reflection without
consideration of viscous effects are thereby missing an important factor.
Definition of an experimental point in terms of Ms and %w is insufficient, for

obl1ique-shock-wave reflections are a function of M_, v _, and initial pressure.
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Figure 1: Regular Reflection (RR)

(a) Schematic diagram
(b) Interferogram
(uw =47, MS = 5,55, Py = 1.1 kPa, T0 = 297 K)

[ - incident shock wave, R - reflected shock wave,
W o wedge angle
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Figure 2: Single-Mach Reflection (SMR)

(a) Schematic diagram
(b) Interferogram ({Ref, 29)

(v~w =207, M5 = 3.00, Py ~ 20,0 kPa, TO = 299 K)
I - incident shock wave, R - reflected shock wave,

M - Mach stem, S - slipstream, T - triple point,
W wedge angle
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Figure 3: Complex-Mach Reflection (CMR) !
(a) Schematic diagram
(b) Interferogram (Ref. 29)

(Ow = 30, MS = 3,09, Pg = 8.0 kPa, T0 = 296 K)
9w - wedge angle, I - incident shock wave,
3 Ry, R' - first and second reflected shock waves,

M - Mach stem, S - slipstream, T - triple point, K - kink
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;:: Figure 4: Double-Mach Reflection (DMR)

;:: (a) Schematic diagram

i (b) Interferogram (Ref. 29)

> (n 40 , M = 5,50, Pg = 1.33 kPa, TO = 298 K)
N s

" T wedge ang]e, I - incident shock wave,
;:h RY R' - first and second reflected shock waves,

. M, M' - first and second Mach stems,
' T, T' - first and second triple points,

-— S, S' - first and second slipstreams
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Figure 6: Possible bow-shock configurations

(a) straight, attached shock
(b) curved, attached shock
(c) curved, detached shock
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Figure 7: Schematic diagram of regular reflection (RR) !
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Figure 40a:  Interforoor o 0 gl o peflection (SMR)
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Lloseup of triple point T
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, Appendix A
: SOLUTION OF FLOW FOR RR AND MR

The flow at an intersection of shock waves is readily calculated by
; applying the equations of motion across each of the waves, and using the
- proper boundary conditions. The frame of reference is fixed to the confluence

point; triple point T in MR and reflection point P in RR. The equations of

 y 4w -

motion across a shock wave are (Figs. A-1 and A-2):

Continuity of tangential velocity:

: U, cos(¢i) = Uj cos(@i—ej) (A1)
! Conservation of mass:
o U, s1n(¢i) iy Uj S1n(¢i'ej) (A.2)
Momentum equation:
2 .2 _ 2 .2

Py Py U;" sin (¢1) = P + F Uj sin (¢i'0j) (A.3)
K Conservation of energy:
i
A 1,2 .2 _ 1,2 .2
; h, + 5 U,” sin (¢i) = hj + = Uj sin (¢i-0 ) (A.4)
: where subscripts i and j refer to the regions upstream and downstream of the
)
: shock wave respectively.

The two necessary independent thermodynamic variables wusually specified

are p and T, thus giving p and h since the equations of state are given by:

o= U(p,T) (A.S)
h{p,T) (A.6)

a
=
1

If the gas is frozen, a closed-form solution exists.
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For both RR and MR the following substitutions apply:

Incident shock wave I: i=0;3=1 (A.7)
Reflected shock wave R: i=13;3=2 (A.8)
Mach stem M: i=0,3=3 (A.9)

(except ¢, = ¢5)
For clarity, these are 1illustrated in Fig. A-1 for the case of MR, and

Fig. A-2 for RR.

The variables most often used to define the case under consideration are

MS and aw. The incident flow velocity and direction are calculated by

attaching the frame of reference to point T in MR, or P in RR, and applying

the gasdynamic equations and geometric relationships.

Solution of Flow at T in MR

The boundary conditions are:
Py = Py (A.10)
(A.11)

An additional constraint must be specified to solve the equations. It is

assumed that at T, the Mach stem is perpendicular to the wedge surface.
One method of solution is:

1. Guess X and w', and calculate the flow 1in region O,
relative to T.

2. Calculate the flow in region 1 by applying the equations of
motion across 1.

3. Calculate the fiow in region 2 by applying the equations of

motion across R.
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solutions

4, Calculate the flow in region 3 by applying the equations

A.10 and A.11.

It should be noted that in

for MR can exist [44].

of

motion across M,
Compare the flow direction and pressure in regions 2 and 3,

and adjust X and ' to try and achieve boundary conditions

Repeat steps 2 through 5 until convergence is achieved.

some areas of the (Ms’ ew) plane, two

However, the one with lower value of X and

w' is the only one which occurs in practice.

Solution of Flow at P in RR

This configuration 1is 1illustrated in Fig. A-2. The only boundary
condition is:
8, -8, =0 (A.12)
The method of solution is very similar to that for T in MR,
1. Guess w', and calculate the flow in region 0, relative to P.
2. Calculate the flow in region 1 by applying the equations of
motion across I.
3. Calculate the flow in region 2 by applying the equations of
motion across R.
4, Find the flow direction in region 2 and adjust w' to try and
achieve boundary condition A.12.
5. Repeat steps 3 to 4 until convergence is achieved.
Solutions for RR and MR over a wide range of Mach numbers and wedge
angles were tabulated and plotted by Hu and Shirouzu [27].
A3
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g APPENDIX B
-
:,‘
" Computer Program to €find the
‘.:| RRe-MR Transition Boundary in Frozen Aair
N}
C'
&
- C #BRPIFADH Q5 F365F3 33335 F 3303 333 A3 143 3 H 3634 F 32 I BN B F I PR S
o C = THIS PROGRAM SOLVES FOR THE RR-MR TRANSITION BOUNDARY FOR FROZEN
= C # AIR IT CAN BE EASILY MAODIFIED FOR OTHER FROZEN GASES.
. C # OPTIONS ARE FOR THE DETACHMENT, SONIC, AND MECHANICAL EQUILIBRIUM
o C # CRITERIA
N C # THE SHORT AND SIMPLE DESIGN ALLOWS IT TO BE TRANSLATED FOR A
C # MICROCOMPUTER, AND EXECUTION TIME IS MINIMAL. :
:\ C 3 3443834 313038 34 34 3551 7t 3303034 S5 3ESE 3 35 S 3H 30 H I 34 S 51 F 3 S B IR 3 3 3 3 B 3
LQ C
K-y REAL M3, M0, M1, M2
@ COMMON G. R
K PI=3 141592654
: RADDEG=180 O/PI
- C
>
-l C THERMODYMAMIC GAS PROPERTIES
~‘__ c
£ R=8320 1/28 947
b, G=1. 400
C
£ C GPTIONS
M C
Q o I0OPT = 1 DETACHMENT CRITERION
-~ o IOPT = 2 SONIC CRITERION
s o IOPT = 3 MECHANICAL EQUILIBRIUM CRITERION
C
2 READ(S. #) NCASE
o WRTITE (4, 100}
L DO 10 I=1.NCASE
N y
W C THETAD IS5 THE DISPLACEMENT WEDGE ANGLE CAUSED BY THE
C BOUNDARY-I_AYER BEHIND THE INCIDENT SHOCK WAVE.
C IT APPLIES ONLY TO THE SONIC AND DETACHMENT CRITERIA
[ C TRANSITION BEOUNDARIES
B Y. r
b :
xd READ(S. % MS, THETAD. 10PT
S IF(IOPT £€Q 3) THETAD=0 O
. THETAD=THETAD /RADDEG
o IFCINPT LE 2) CALL DETSON(MS, THETAW, THETAD, PHI1, IOPT)
o~ IFCINPT EQ 3) CALL DETSON(MS, THETAW, O O, PHIL, 1)
- I[F(IOPT EQ 3) CALL MECHEQ(MS, THETAW, FHI1, IOPT)
::“ C
- ¢ CALCULATE ALL THE THERMODYNAMIC STATES
C
@ PHIO=FP1s2 ~THETAW
e‘ MO=MS/SIN(PHIO
)
1)

CALL OCSWaVE(PHIN, MO, 1 1 oML, PID,. TIO, THETAL)
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CALL OSWAVE(PHI1, M1,P10,T10, M2,P20, T20, THETA2)
OMEGAP=PHI1-THETA1

c

C SWITCH FROM RADIANS TO DEGREES AND OUTPUT THE DATA

c

THETAW=THETAW#RADDEG

PHIO=PHIO#RADDEG

PHI1=PHI1#RADDEG

THETA1=THETA1 #RADDEG

THETA2=THETAZ #+RADDEG

THETAD=THETAD#RADDEG

OMEGAP=0MEGAP #RADDEG

WRITE (6, 200) MS, THETAW, THETAD, IOQPT, MO, PHIO, THETAl, M1, P10, T10,

1PHIL, THETA2, M2, P20, T20, OMEGAP

CONT INUE

STOP

10

FORMAT(IHL, ///,T7, M5, T13, 'THETAW', T21, 'THETAD’, T30, "I0OPT ‘.
1T41, ‘'M0’, T48, 'PHIOQO’, T3S, ‘THETAL1', Té5, ‘ML, T72, ‘P1 /PO, T8O, 'T1 /70"
2788, ‘PHIL1 /., T95, 'THETAZ2 ', T103, ‘M2’, T112, ‘P2/P0 ', T120, ‘T2/T0O",
37127, 'OMEGAP *, // /)

FORMAT(IR ,TS,F6. 3, T13,F6. 2, T21,F6.2, T32, 11, T39.F&. 3, T47, F6. 2,
1T55, F6 2, T63, F6. 3,771, F6. 2, T79,F6.2, 797, F6. 2, T95. F6. 2, T103,F6. 2,
2T111, F& 2, TI19. F6. 2, T127, F6. 2)

END

100

200

3 3634 3 3 343 3t 3 365 3 3 I 3 34 33 3 36 33 3t 3 36 36 I3 3 336 33 333 3634 33 3 I I 3 I 03I 3 33 36 3 36 3 343

onon

FUNCTION PHIM(M1)

THIS FUNCTION CALCULATES INCIDENCE ANGLE FOR MAXIMUM DEFLECTION
THROUGH THE SHOCK WAVE

o000

REAL ™M1

COMMON G, R

Cli=(G+1 /4 #{(Mlnn2)-1

C2=SQART((G+1 »®*(1. +(G~1 )/2 #(M1luu2)+(G+1
PHIM=ASIN(SQRT(1l /G/(M1##2)#(C1+C2)))
RETURN

END

J/16 #(Miwngd)))

3 36 3634 3t 36 383 3 34 <t & 36 2034 36 3 3 3E 3 4330 b 3030 3 38 3E 6 3 3 33 3F 36 363 38 34 336 3 36 343 3 I 33 3 36 343 3F 34 33 3 I I3 %

OO0

FUNCTION PHIS{M1)

THIS FUNCTION CALCULATES THE INCIDENCE ANGLE FOR SONIC FLOW
BEHIND THE SHOCK

aAaaa

REAL ™1

COMMON G. R

Ci=(G+1 /4 » (MI##2)—-(3 -G)/4.

C2=CSQRT({(G+1 »%((Q +G) /16 -(3 -G)/B #(M1a#u2)+(G+1 . )/16 #(Miung)))
PHIS=ASIN(SQRT (1 /G/ (M1ur2 3% (C1+C2)))

RETURN
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SUBRJLTINE OSWAVE (PHI1,M1,P1, T1, M2.F2, 72, THETA)

FLOW FROPERTIES ARE CALCULATED THROUGH A SHOCK WAVE

O

REAL ™M1. M2, MIN, M2N

COMMON G/ R

Min=M1+5INPHIL)

M2N=SQRT( (2 +/G-1 I#(MIN#22)) /{2 #G» (MIN##2)-G+1 ))

P2=Rix(2 #G/(G5+1. IY#{MIN##2)-(G~1. )/ (G+1 })
2T (0] +(G--1 ) /2 #(MIN##2)1 ) /(1. +(G~-1.)/2 # (M2N#*#2} )

Cl=¢G+1 /2 #{M1##2)/ C(MIN®*#2)~-1 )~1.

THETA=ATAN(L. /C1/TAN(PHI1)

MI2=MZN/SINPHI1-THETA)

RETURN

END

3t 35 363 3 3H 3 3F SE 2k 3EF S G 3 3 I SE 3 G343 3 3E 333t B 363 30 33 24 33638 34 S 3E 3 4 33 3E 3 3E b3 3 4 3490 S 3 3 3 3 3 3E -3 3% 3t

OO0

SUBROLTINE DETSUON(MS, THETAW, THETAD, PHI1, I0PT!

THIS SUBROUTINE S0OLVES FOR EITHER THE DETACHMENT OR SONIC CRITERION
THE FOLLOWIMNG LOGIC IS USED:

1 SET THE MAXIMUM AND MINIMUM POSSIBLE VALUES FOR PHIO

2. ITERATE ON PHIO BY BISECTING THE RANGE OF PHIO UNTIL
THE LIMIT OF RR IS REACHED, WHETHER IT BE THE LIMIT IMPOSED
BY THE DETACHMENT OR SONIZ CRITERIA.

OO0 O0

REAL MS, M0, M1, M2
COMMON G. R
EXTERNAL PHIM, PHIS
PI=35 141592654

N=0

C MINIMUM POSSEIBLE vALUE FOR PHIO
PHIOA=0 G

MAXIMUM POSZIBLE VALUE FOR PHIO
PHIOB=PI/2

—~
[y}

LOOK FOR BOUNDARY

o NeNe]

10 PHIOT=(PHIOA+PHIOB)/2
MO=MS /SIMN(PHIOT)
CALL OSWAVE(PHIOT . MO, 1.,1 ,M1,P1, T1, THETAL)
IF(M1 GE 1 ) @00 TO 20

C RR NOT FOSSIBLE —- PHIO T0OO HIGH

FUNCT=1 C
G0 TG 3C

20 PHIt=PHIM(MI)
IFCIOPT EQ 2) PHI1=PHIS(MI)
CALLL OSWAVE(PHIL M1, 1 1 ,M2, P2, T2, THETAZ)
FUNCT=THETA1 - THETA2-THETAD
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N=N+1
IF(IN 6T 20 GO TO S50

MAKE A NEW GUESS FOR PHIO USING THE BISECTION METHOD

O G

30 IF(FUNCT GT. 0. 0) THEN
PHIOB=PHIOT
ELSE
PHIQA=PHIOT
ENDIF
GO TO 10
50 THETAW=P{/2 -PHIOB
RETURN
END

3 5 343 3 38 33 3 30 SEIE 3 3 3 E 36 3E 4 3 34 303 3E 28 JH I 5 JE I E 3 36 3630 3 3 53 36 36 3H3F 3 36 3436 3 3 33 3E 3 30 3 3t 3E

e NeNe]

SUBROUTINE MECHEQ(MS, THETAW, PHI1, I0PT)

THIS SUBROUT INE SOLVES THE MECHANICAL EQUILIBRIUM CRITERION
THE FOLLOWING LOGIC IS USED:

1 SET THE MINIMUM AND MAXIMUM POSSIBLE VALUES FOR PHIO.

2 CHECK TO SEE IF A SOLUTION IS POSSIBLE BY LOOKING
AT THE DETACHMENT CRITERION SOLUTION.
THIS POINT CORRESPONDS TO THE MAXIMUM POSSIBLE VALUE
FOR PHIO AT THE MECHANICAL EQUILIBRIUM BOUNDARY.

3 USE THE BISECTION METHOD TO GET A FIRST GUESS FOR
PHIO AT THE MECHANICAL EQUILIBRIUM BOUNDARY.

4 CALCULATE THE FLOW IN REGIONS 1 AND 3.
AND FLOW DEFLECTION THROUGH THE INCIDENT SHOCK

5 ITERATE ON PHI1 UNTIL THE DEFLECTION THROUGH THE REFLECTED
SHOCK IS EQUAL AND OPPOSITE TO THAT THROUGH THE INCIDENT
SHOCK USE A BISECTION METHOD

& COMPARE THE PRESSURES IN REGION 2 AND 3.

7 USING THE BISECTIDON METHOD, GET A NEW VALUE FOR PHIO
AND REPEAT STEPS 4 THROUGH 6 UNTIL CONVERGENCE IS
ACHIEVED

OGO GOoOoO0O00ao0000n0n0n

REAL Ms, MO, ML. M2, M3
COMMON G, R

EXTERNAL PHIM

PI=3 141592454

M=0

C MINIMUM POSSIBLE VALUE FOR PHIO
PHIOA=0O 2

C MAXIMUM POSSIBLE VALUE FOR PHIO., THE DETACHMENT CRITERION BOUNDARY
PHIOB=PI/2 —-THETAW

C

C CHECK TO SEE IF A MECHANICAL EQUILIBRIUM SOLUTION EXISTS

c !

MO=MS/SIN(PHIOD)

CALL OSWAVE(PHIOB,MO. 1 , 1. ,M1,P1, T1, THETAL)

CAaLL OSWAVE(PT /2 , MO, 1 1. ,M3.P3, T3, DUMMY)

PHI1A=PHIM(MI1) :
CAlL OSWAVE(PHITA, M1, PL1, T1,M2,P2, T2, THETAZ2)
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IVPS LB P2 GO TO 10

WRLITE 5. %) "NO MECHANICAL EQUILIBRIUM SOLUTION EXISTS AT,
1 Ms = M5

10FT=1

RETURN

LOOw FOR THE BOUNDARY

1O PHIODT = PHIDA+FHIOB) /2
MO=MS ., GINPHTOT)

CALL USWAVE (RP#IST. MO, 1 o1 ML, PL, T1L, THETAL)
cALL DSWAVERT-Z MO L .1 M3,P3, T3, THETAZ?
SOLVE F0F <=l T3 aUCHIEVE NO NET DEFLECTION - USE BISECTION METHGD

TO ITERA E

NG =
Max IMum =05<SIBLE VALUE OF PHI1

PHI1A=PHIM(M]L;
MINIMUM FOSSIBLE VALUE OF PHI
PHI1B=ASINC1T /M1)+. 000QO01
FHIL1T=(PHI1A+FHI1B) /2.
CALL OSWAVE(PHILIT, M1.P1,T1, M2, P2, T2, THETA2T}
IFCABS(THETAZT-THETAL) LT 1. 7E-05) GO T4 30
IF(N2 GT.20) GO T0 4Q
N2=N2+ 1
IF(THETAZT GT
PHI1A=FPHILIT
ELSE
PHI1B=PHILT
ENDIF
GO TO 20

20

THETA1) THEN

CALCULATE A& NEW VALUE FOR PHIO
USE THE BISECTION METHOD TO ITERATE

30 CONTINUE
FUNCT=P3-P2
N=N+1
IF(N. GT. 20} GO TG 60
IF(FUNCT GT.0.0Q) THEN

PHIOA=PHIOT
ELSE
PHIOB=PHIOT
ENDIF

GO 7O O

ERROR MESSAGES

40 WRITE(6, #) 'NO CONVERGENCE - INNER LOOP OF MECHEQ’
STOP
60 THETAW=PI/2 -PHIOB
PHI1=PHILT
RETURN
END

BS

e pon et e e ..
e P AN T LA L AT

Fp e e e e .

U
’”’*\‘.5 LS
» »¥y .

'
' 2\ ot




i‘$4 Appendix C

239 THERMODYNAMIC PROPERTIES OF AIR
INCLUDING VIBRATIONAL EXCITATION

Mg Each degree of freedom of a gas molecule contributes a share to the total
'a_' energy of the molecule. The quantity of energy per unit mass from a fully

excited degree of freedom is RT/2. For a frozen diatomic molecule such as O2

: j or N,, there are 3 translational and 2 rotational degrees of freedom. The
YO
o

energy per unit mass 1s therefore:

€rar = 3 RT (C.1)

. [t follows immediately that:

' c = -2 R (C.2a)
0% v T, 2 .
_ _ 7
= ¢ +R = 5 R (C.2b)
o Therefore:
. ‘5 7
J v=L=1=1.4 (C.2c)

c 5
v

v for a frozen diatomic molecule,

However, diatomic molecules aiso have a vibrational c¢nergy mode, along

the axis Jjoining the two atoms. The energy per unit mass for @ vibrational

iy energy mode is:

LN ) e = RT —%_ (C.3a)

i<

b where z = (C.3b)

Cl
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av is called the characteristic vibrational temperature and is unique for

each gas. From Ref. 47:

for 0,: 9 2270 K

2 %

3390 K

D
il

for NZ:

Substitution of room temperature (293 K) into Egns. C.3a and C.3b gives

vibrational energies:

i

for 02: e 0.00335 RT

for NZ: e 0.00011 RT
Virtually no vibrational excitation occurs at room temperature for air,

As a result of this additional vibrational energy, the specific heats

also change,

2
cy = c, + R e z (C.4a)
t+r+v t+r e -1

(C.4b)

n
el
+
(2]

cpt+r+v Vitrsy
Unlike the translational and rotational degrees of freedom, which become
fully excited within a few mean free paths, vibrational equilibrium takes a
relatively long time to occur, The rate of vibrational excitation decays
exponentially to an equilibrium value. Because of the exponential nature of
the excitation process, the relaxation time is defined as the time over which
1-1/e or 63.25 of the final excitation level is reached. It can be expressed
as:
¢

T =— exi C,T
p

-1/3
> )

\C.5)

(0
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. The values of C1 and 62 from two sources are listed in Table C-1, It s
important to note that the relaxation tire s inversely proportional to

pressure, and much less dependent on temperature.

y The relaxation lengths behind a normal shock wave in O2 and N2 are

4
. plotted in Figs. C-1 and C-2. A pressure of 2.0 kPa was chosen as a reference
value for the plots, but correction for any other pressure can be made using

Eq. C.5.

One might expect that the relaxation lengths for oxygen and nitrogen will

i differ when the two are mixed as in air, Since oxygen 1is affected before

; nitrogen, its vibrational mode is not affected much by collision with

i vibrating nitrogen molecules. As such, the relaxation 1length of oxygen is

4 affected very 1little by the presence of nitrogen [45], This 1is not true for
nitrogen however. When nitrogen begins to become excited, the oxygen
molecules are already vibrating, and their collision with the nitrogen

j molecules does change the relaxation Tlength of nitrogen. Even with this

N change, the relaxation length of oxygen is still much shorter than that of
nitrogen.

§

¢

N
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Table C-1

Empirical Constants in the
N Vibrational-Relaxation-Time Equation (C.5)
f_
: Gas C C Temp. Range Ref.
) ! 2 173
- (atm-usec) (Deg. K*'7) (Deg. K)
.
' 0, 2.92 x 107 126 1000 - 3700 46
R 0, | 5.42x 107 | 143.4 800 - 3200 47
b
™, _5
z NZ 6.22 x 10 202 3000 - 4500 46
a
: N, | 7.12 x 107 124.1 800 - 6000 47
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Appendix D
LAMINAR-BOUNDARY-LAYER EQUATIONS

This appendix outlines the basic technique used in calculating the
boundary-layer profile behind a moving shock wave. This method of solution is
based on work done by Mirels [37,38]. Recent, more precise methods of solution
exist [48, 49] but were not used due to complexity. The reference frame is
attached to the shock wave, as shown in Fig. D-1, so that the flow (US - Ul) is

steady, and the wall moves with a velocity Us'

The equations which govern the flow in the boundary layer are the same as
those for the external flow; continuity, momentum, energy and an equation of
state. The boundary-layer equations include terms for viscosity |, and heat
conduction k, and 1in this solution it is assumed that no pressure gradient
exists. For a more general explanation of the equations and their physical

meaning, see Schlichting [50].

The boundary layer equations are:

= Ty Continuity (D.1)
uu ,vau 1 u.ig) Momentum (D.2)
X 5y o3y ay

cC_fu 3T v 3T : k =T “U 2 ( )
- EAIFE L ORI VU Ener D.3

p( : ?y) i*y( y) (y> 9
p = ¢RT Equation of State (D.4)

with boundary conditions:
u(x,0) = u, (D.5a)
u(x,=) = Ug (D.5b)
v(x,0) = 0 (D.5¢)
T(x,0) = T, (D.5d)
T(x,») = T (D.5e)
e
D1
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e Since the flow is continuous, a stream function y exists such that

N, sy _ pu
iy Iy T % (D.6a)
r
R Jd ey
',':;": SN (D.6b)
5&“
e Introduce a similarity parameter
.\3 y
e
R e [ Iry (0.7)
I " ZXv T Y
1A r
8 - al 0
Ay and rewrite the stream function
W
e __
’::!. y o= ZUGer f(n) (D.8)
) It should be noted that
I
vy
> .u_.. = f! (D.9a)
o "w ue
g% 1
":'f'. Y - . __. f + 2xf! o
20N Ug X (D.9b)
o
x

As a simplification, it 1is assumed that the viscosity and the thermal

”?‘3 conductivity are directly proportional to the temperature,
2 * "
W L ey (0.10a)
. Tr
R

! k

i . _r
o k = T T (D.10b)
N r

The choice of reference temperature for viscosity and thermal conductivity is

e .
v somewhat arbitrary at this point. A wise choice of reference temperature may
I‘ M
"5.
:* X minimize error caused by this simplification [38], and will be discussed later.
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When equations 0.8, D.9, and D.10 are substituted into the momentum

equation, it becomes

f:ll + ffun =0
with boundary conditions
f (0) =0
! =
f'(0) uw/ue
fl(o) =1

Substitution of equations D.9, D.9, and D.10 into the energy equation
yields:

T'' + of T' = -0 (A-1) M
assuming the Prandtl number o is constant.

From equation D-12, the temperature distribution can be expressed as

2

u T =T .
T ooq4xd (_W- )Me r(n)+(_W_T—‘l’—‘)s(r.)
Te 2 ue e

where r{n) satisfies

r' + ofr' = -<77“_—__——2 (f")
)

-5 -
o~
8 o
N N
1 1
o o

s{(n) satisfies

1%)
+
Q
-+
W
|
o

and

L 2 s xd u, AW
T 7 | \g, Y Me| O

D3

O S U
"~ -

(D.11)

(D.11a)
(D.11b)
(D.1l1c)

(D.12)

(D.13)

(D.14)

(D.14a)
(D.14b)

(D.15)

(D.15a)

(D.15b)

(D.16)
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The temperature distribution is in fact a combination of 2 solutions; the
solution for the case of an insulated wall, plus one for addition of heat

transfer through the wall. Tw ; is the temperature which would occur at the

wall if it were insulated, and r(0) is a recovery factor for the recovery
temperature Tr at the wall, which is less than the adiabatic total temperature.
To get y in terms of n, equations D.7 and D.13 are combined, giving
2 n i
2xv T 1 u T - T .
y = r TE .4 l%_ LAV | Mg rd + _!LT__EQJ. s dn (D.17)
e 'p Ye e
0 0
Another parameter of interest is
n
Te r v=1 | (W ‘
22X == e {Tim (rn-f) + 2 (-2 -1]M r dn
TrJ%Ue | s = 2 (ue e ' (D.18)
0
n
T -1 .
+ ¥ 7 W, 1 “/ﬂs dn
e
0
The distribution of §* with axial distance is of the form:
6 = ¢, «F (D.19)
The angle at which flow enters the boundary layer is determined by the rate
at which -* grows. The boundary-layer flow entry angle is defined by:
X = d_. * = 1 -5
tan(-b]) dx<6 ) 5 Cy x (D.20)
D4
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Solution of equations D.11 to D.llc and D.14 to D.15b gives a
non-dimensional profile of the boundary layer. The rest of the equations can

then be applied to get velocity and temperature profiles.,

The wall temperature used is that of the wall before the shock passes.
This was shown to be quite valid [38] as the conductivity of the wall is much

higher than that of the air, and the wall acts as a large heat sink.

Viscosity and heat conduction do not vary linearly with temperature and
the assumption that they do will only be approximate. To minimize the effects
of this approximation, a specific reference temperature is used., The reference

temperature
T.=0.5 (Tw + Te) + 0.22 (Tw - Te) (D.19)

r ,1

will minimize the error in heat transfer and shear stress at the wall [38].
The method of solution for the non-dimensional profiles is as follows:
1. Solve for the distribution of f

(a) Set boundary conditions D.1la and D.11b for f(0) and
f'(0)

(b) Guess f''(0) and use a Runge-Kutta method to integrate
equation D.11 from n=0 ton=6 (n=6 1is a close

approximation to n = «)
(c) Compare f(6) to boundary condition D.1llc

(d) Repeat steps b and ¢ until convergence is achieved

05

000y g ! WS HhE P, Y *

o

e el LRI 1, o e T A R A T R T R P Rt S S e A N S A L A L L SR LA A C AR
AT AAAEE ST 'v‘i“(.'ﬁ D Nt VAN LA A V*.‘-"‘--"\'1‘~.k LA - .\V“\‘ SN




3
(AL
F

e
Ao

T
-
» »

'l‘:. ‘.l‘ *a ‘: h 3

e
K ea) o]

........

.........

2. Solve for the distribution of r

(a)

(d)

(e)

Set f(0), f'(0), f''(0) obtained in step 1

Set boundary condition D.1l4a for r'(0)

Guess r(0) and use a Runge-Kutta method to

equations D,11 and D.14 fromn = 0 ton = 6.

Compare r(6) to boundary condition D.14b

integrate

Repeat steps ¢ and d until convergence is achieved.

3. Solve for the distribution of s

(a)

(b)

(c)

(d)

(e)

The complete Fortran program for

Set f(0), f'(0), f''(0) obtained in step 1

Set boundary condition D.15a for s(0)

Guess s'(0) and use a Runge-Kutta method to

equations D.11 and D.15 fromn = 0 ton = 6,

Compare s(6) to boundary condition D.15b

integrate

Repeat steps ¢ and d until convergence is achieved.

the solution

equations is listed in Appendix E.
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of the boundary

layer
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Figure D-1: Laminar-boundary-layer velocity distribution in
two different reference frames

(a) Laboratory-fixed reference frame

(b) Shock-fixed reference frame
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APPENDIX E

Computer Program for the Solution af the

Laminar-Boundary—-Layer Equatians

SUBRLUTINE BLAYER(PE, TE, UE, TW, UW, REYN, DELTA, DELSTAR, THETAD,.
110Ut

THIS SUBROUWT INE SOLVES FOR THE BOUNDARY LAYER BEHIND A PLANE
NORMAL SHOCE WAVE MOVING INTO STILL AIR
IT Is BASED ON NACA TN 3401 AND NACA TN 3712 BY H. MIRELS

REAL ME. "UW, NUREF, A(301., &)
REAL Y(3,, Wk (100, BLF (301, )
INTEGER I[WK(DS:

COMMON -2/ PR.C1

EXTERNAL FCN, FCNu

INITTALIZE DATA

PR=0 72
Cci=0 0O
RAIR=287 074
GA[R=1 &
PW=PE
CLENGTH 195 AN ARBITRARILY CHOSEN CHARACTERISTIC LENGTH
CLENGTH=1 OE-0OZ

CALLCULATE SOME FLOW PROPERTIES

AL =5QRT TAIR=RAIR2TE )
ME=UE /AL

RHOE=FE ~"AIR/ TE
RHOW=PW/RAIR/ Tk
MUW=VIGSCT(TW 7 RHOW
UWUE=UW/ UE

s razw SULUTION OF BOUNDARY LAYER DIFFERENTIAL EQUATIONS

1}

Y1) F

Y(2) = F
Y3y = F
Y(4: =~ R (0OR S DEPENDING ON WHICH IS BEING SOLVED FUR
Y(5, = P  OR S’ DEPENDING ON WHICH IS BEING SOLVED FOR

LR A S R I AU S B IR R RS R L EEE SR AR LR L R R

# SOLVE FOR THE DISTRIBUTION OF F =«

LR R 25 X E R I E IR EEE R L N I - E- R TR It

[
[

E1
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INITIALIZE DATA FOR IMSL SUBROUTINE ‘DGEAR’
‘DGEAR‘ INTEGRATES THE BOUNDARY LAYER EQUATIONS USING RUNGE-KUTTA

H, N, TOL, METH, AND MITER ARE PARAMETERS FOR ‘DGEAR’

N=5

TAL=. &0O001
METH=2
MITER=3

SET THE INITIAL CONDITIONS
FPPZ IS F"(0Q)

FPPZI=-0. 124425%#(UWUE#32)-0. 77505+#UWUE+1. 0287
10 X=0.0

Y{1}=0 0

Y (2)=UWUE

Y(3)=FPPZ

Y(4)=0.C

Y(5)=0.0

H= 000001

INDEX=1

SOLVE FOR F-PRIME AT INFINITY (FPI)

DO 20 I=1,300

XEND=. 02+ I

CALL DGEAR(N, FCN, FCNJ., X, H, ¥, XEND, TOL, METH, MITER, INDEX, IWK, WK, IER)
20 IF(IER.NE. O) WRITE(&:, ) “IER IS ’, IER

FPPINEW=FPPZ

FPINEW=Y (2)

IF(IOUT. EQ. 2) WRITE(6.,#) ‘FPINEW IS *,FPINEW, FPPZ
L=L+1

IF(L. GT 15) STOP

IF(L. GT. 1) GO TO 30

FPPZ=FPPZINEW+O. 05

GO TO 40

CALCULATE A NEW F"(0) —-— FPPZ

30 IF(ABS(FPINEW-1.0).LT. 1. OE-05) GO TO 100
FPPZ=FPPZNEW+ (1. O-FPINEW) / (FPINEW-FPIQOLD)#(FPPINEW-FPPZOLD)
40 FPPZOLD=FPPINEW
FPIOLD=FPINEW
GO TO 1C
e L R EER T R R
# SOLVE FOR THE DISTRIBUTION OF R #
B 23 3 4 e B3 33 S S S R

100 L=0C
Cil=-2 O0#FPP/((UWUE-1. )=#2)

'\.
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&"'x
s
oy
tﬁ& z INITIALIZE DATA FOR IMSL SUBROUTINE °‘DGEAR’
) N=5
W TOL= Coon0l
b : MITH=2
AN MiTER =2
N '
21- , C SET THE INITIAL. CONDITIONS
: C
A C RZ IS RO
Ng c
o RZI=-0 QUCEI5# {UNUE#*#2)+0. 01155#*UWUE+C. 8799
Ny 110 x=0 ©
Sat Y{(1,)=0Q ¢
Y (2) =UWUE
A Y {3)=FFFZ
?{ Y{4)Y=RZ
o Y(5)=0.0C
I H=. 000001
uhw INDEX =1
C
o C SOLVE FOR R AT INFINITY (RI)
s c
ot DO 120 I=1.300
g XEND=. 02% I
X CALL DGEAR(N, FCN, FCNJ, X, H, Y, XEND, TOL, METH, MITER. INDEX, IWK, WK, IER ]
C STORE THE NON-DIMENSIONAL BOUNDARY LAYER PARAMETERS FOR LATER USE
v BLP(I+1, 1)=Y(1)
N BLP(I+1,2)=Y(2)
c BLF(I+1, 3)=Y (3}
- BLP(I+1, 4)=Y{4)
b <5 BLP(I+1,5)=Y(5)

; 120 IF(IER NE 0) WRITE(KL, #) 'IER2 IS ‘., 1ER
1) C

jﬁ RZNEW=RZ
o8 RINEW=Y(4)

W IF(IOUT EQ 2) WRITE(L, #) ‘RINEW IS ‘, RINEW, RZNEW
5He) L=L+1

, IF(L 6T 15) STOP
- IF(L 6T 1) GO TO 130

e RZ=RZNEW+0O 05
o GO TO 140

o C
o C CALCULATE A NEW R AT ZERQO (RZ)

C

N 130 IF(ABS(RINEW-0.0) LT 1. 0E-05) GD TO 200
e RZ=RZNEW+ (0. O-RINEW)/ (RINEW-RIOLD)%(RZNEW-RZOLD)
‘N 140 RIOLD=RZMNEW

" RIOLD=RINEW
N GO TO 110

C
.
A
PN
I '1.‘
N
18
TSN -
gyt £E3
AL 7 Lo A S D s L ) I A e R s
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$\- 0 SE 33 S 3t 1 4y B3 3E B 30 3 SE R SE 3 3 3 4E 3 3 33 3 3t 3
;I { # SOLVE FOR THE DISTRIBUTION OF S =*
.t BB A B0 I3 S 4 2 B I 28 R R
s C
i 200 REC=RZ
2ot L=0
o Ct=0 0
.-':- C
y C INITIALIZE DATA FOR IMSL SUBROUTINE ‘DGEAR’
<, C
N=5 >
NS TOL= 200001
e METH=2
e MITER=3
N C
W C SET THE INITIAL CONDITIONS
AN C SPZ IS S 0
O C
R SPZ=0 006725% (UWUE##2)-0. 17255*UWUE-0 533
e 210 X=0 O
O Yi1)=0 0
Y (2) =UWUE
o Y (3)=FFPZ
P Y(4)=1. 0
.’_-;. Y(5)=8FZ
= H= 000001
K INDEX =1
C
D C SOLVE FOR S AT INFINITY (SI)
oo c
3 DO 220 I=1,300
X XEND= 02«1
5 CALL DGEAR(N, FCN, FCNJ, X, H, ¥, XEND, TOL, METH., MITER, INDEX, IWK, WK, IER)
BLP(I+1, &)=Y (4)
) BLP(I+1, 7)=Y(5)
T 220 IF(IER NE. Q) WRITE(&, %) ‘IER3 IS ‘, IER
e c
) SPINEW=SPZ
o SINEW=Y(4)
IF(IDUT EQ.2) WRITE(L,#) ‘SINEW IS ‘, SINEW, SIOLD, SPZ
D L=L+1
A0S IF(L GT 15) STOP
oo IF(L. GT 1) GO TO 230
-;5 SPZ=SPZNEW+0. 05
K GO TO 240
C
[ C CALCULATE & NEW S-PRIME AT ZERO (SPZ)
ey C
e 230 IF(ABS(SINEW-0 0) LT. 1. 0E-05) 6O TO 300
~ SPZ=SPINEW+(0. O-SINEW) /(SINEW-SIOLD)#* (SPZNEW-SPZOLD)
Lx 240 SPZOLD=SPZNEW
SIDLD=SINEW
o GO TO 210
v 300 CONTINUE
3 "\
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> LOAD THE BLF MATRIX FOR THE ROW CORRESPONDING TO ETA = O

K BLP«1.1)=0 O
: BLP: 1. 20 =UWUE
. BLP: 1, 3)=FPFZ
. BLP. 1, 4)=REC
. BLF.1.5%=0Q O
. BLP 1.5:=1 O
: Bi_LFv1 7i=8PZ
, [F IguT NE 23 GO TO 320
. C
. C  OUTPUT THE ™MATRIx OF NON-DIMENSION BOUNDARY LAYER PARAMETERS
) ~

DO 31 I=1.301 5%
N ETa= 02« 1-1)
WRITE (&, 1 O00) ETa, (BLF(I, J), Jd=1, 7)
310 CONTINUE

- C
- C
: (:, FRHBE ARG T A HREH R I H R RN RN R I Y NN
- T % USE BOUNDARY LAYER PROFILE TO DO CALCULATIONS
. O Rt g 3 b 0 AN 33 A 3 Sk 3 3 3 3 3
;: C
5 C INITIALIZE SOME OF THE BOUNDARY LAYER PARAMETERS
3 C
S 320 RDN=0 ¢
SDN=0 3
o youLk=0 ©
: Cl=iGAalR-1 )/2 ={ (UWUE~-1. 1#ME)##2
< TWI=TE#*{1 +C1#REC)
7 ¢ REFERENCE T A MEAN TEMPERATURE TO GET A BETTER SOLUTION
¢ SEE NACA TN 3712
C
" TREF=0 Sa (TW+TE)+0Q 22#(TWI-TE)
- RHOREF =RYDE#*TE/TREF
g NUREF =vISC0O( TREF 3 /RHOREF
. c
1 C CALCULATE THE BOUNDARY LAYER DATA
C
- OO 400 »=2,301
- ETA= C24iK-—1)
- FP=BLF », 2)
N R=BLP (k. 4)
S=BLF (k. 5)
; RDN=RDMN+ (BLP (K, 4) +BLP (K-1, 4)) /2 % 0D
N SOMN=SDN+:  BLP (K, &) +BLP (K=1,6)) /72 % 02
., (:
'\ T=TE# i1 +C1eR+(TW~TWI ) /TE#G)
Y RHO=RHOE*TE/ T
C2=TE TREF#(ETA+C1#RDN+(TW~-TWI )}/ TE#3DN)
YNEW=SGRT (2 »NUREF /UE ) #CR2
| DY=YNEw- yOLD
.. YyOLD=yNFEW
2
£5
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) U=UE#FP

! C3=(U=Ui} / (UE-UW)
P IF(C3 LT  99) N=K
[N

O C

C LOAD UP THE OUTPUT ARRAY — WHILE CALCULATING Y AT CHAR. LENGTH
a ¢

#{ ALK 1=ETA -
A A (K, 2)=YNEW*SGRT ( CLENGTH)
vﬂi A(K, 3)=U
R0 AK, 45=T
A(K, 5)=C3 '
G AK, 6)=(T-TW) / (TE-TW?
555 400 CONTINUE
TN C
ij:? C LOAD THE OUTPUT ARRAY FOR THE ROW CORRESPONDING TO ETA = O
4
) e C
)‘c A(l, 2)=0.0
N ACL, 3)=UW
65 AL, 4)=TW
o A(1,5)=0.0
s Al 6)=0. 0
i IF(I0UT EQ. 2) WRITE(&.,#) ‘RDN AND SDN ARE ‘, RDN, SDN
& c
o C CALCULATE DELTASTAR AT X = 1MM
ol c
‘;E DELSTAR=2. O#CLENGTH*TE/TREF*SART (NUREF /2. /CLENGTH/UE)
R 1# (ETA-BLP (301, 1) +C1#RDN+( TW-TWI) / TE¥SDN)
] c
S C CALCULATE DELTA AND REYNOLDS NUMBER
s c
P DELTA=( F9~A(N, 5))/(AN+1, 5)~AIN, 5))# (AIN+1, 2} =A(N, 2) ) +A (N, 2)
0 REYN=CLENGTH# (UW-UE) / NUW
e c
) C NOW TO CALCULATE THE DISPLACEMENT ANGLE
A C IT WILL BE A POSITIVE NUMBER BY CONVENTION
L c
e THETAD=-0. 5#ATAN(DELSTAR/CLENGTH?
N c
e IF (I0UT £Q.0) RETURN
c
o C FULL OUTPUT OF BOUNDARY LAYER PROFILE
N c
S WRITE (6, 2000)
WO WRITE (6, 2100) UE, TE
R WRITE (&, 2200) UW, TW
WRITE (& 2300) UWUE, TREF
"y WRITE (& 2400) UE+AE
e WRITE (6, 2500) REYN
o WRITE (6, 2550} -DELSTAR#1000
o WRITE (&, 2600) THETAD#57. 2958
N WRITE (&, 2700}
WRITE (&, 2B00)
I WRITE (&6, 2900)
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DO 410 W=1,301,°%

410 WRITE (&, 3000) AK, 1), A(K, 23#1000 , A(K,3), Ak, &7,
1A(K. 2)Y/DELTA, Aa(K, 531, A(K, &)
RETURN
C
. C  FORMAT STATEMENTS
100C FORMAT: 14 ,F4 1, 7(Sx. F7 4"
2000 FORMATiiH1, "#24a2BJUNDARY LAYER PROFILE DATA#®# -—- VERSION 3, )
2100 FORMAT: . & , UE = ,F7 1, M/SEC, T42, 'TE = “,F7 1, © DEG ¥
2200 FORMAT i+, "UW = ‘,F7 1. M/SEC.T42, "TW = ‘,F7 t.  DEG K
Z300 FORMAT(IH , "UW/UE = W F4 2, T&0, TREF = “.F7. 1,7’ DEG WK’
2400 FORMAT: 1+ , "UE+AE = ,F7 1, M/SEC ")
2500 FORMAT(:=0, "REYNDLDS NUMBER (lL.=1MM; = ‘,EQ 4
2550 FORMAT(1+HO, ‘DISPLACEMENT THICKNESS L=1MM) =, F5 4, MM’}
2600 FORMAT(1H , DISFLACEMENT WEDGE ANGLE (l.=i1MM) = ‘,F& 3, ° DEG'
2700 FORMAT(, . 1H ETA Y U -
1 T Y U—-UW T-TW
2800 FUORMAT« 1H (MM (M/SECHY”
i’ (DEG K, DELTA VE-UW TE-TW’)
2900 FORMATC(IH , ° e 2
T U j
3000 FORMAT: L+ .BX,F3 1,10X,F6 5. 6X,.F7.1,6X.F7.1.10X,F6. 4, 6X,F& 4.
167.F6 4.
C
N
C
C FCN - DEFINES THE EwUATIONS TO BE SOLVED BY ‘DGEAR’
C
SUBRQUTINE FCN(N, X, Y, YPRIME)
COMMON /C/ PR, (C1
INTEGER N
REAL Y {N', YPRIME(N), X
YPRIME (1 =Y (2)
YPRIME{Z:=Y(3)
YPRIME(3r==Y(1i:#v(3)
YPRIME (43 =Y(5)
YPRIME (S5 =Cl#Y (3, ##2~-PRaY (1)#Y (5}
RETURN
END
C
C
C ‘FCNU ' IS A DUMMY SUBROUTINE FOR THE SOLVER ‘DGEAR’
C
SUBROUTINE FCNJ(N, X, Y, PD)
INTEGER N
REAL Y (N3, PD(N,N)
RETURN
END
C
E7
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REAL FUNCTION VISCO(TEMP)

THIS CALCULATION USES EQUATION &8 FROM NASA TECHNICAL REPORT
TR R-50

VISCO=1. 462E-06#SQRT(TEMP) /(1. +112. /TEMP)

RETURN
END

ES

At

P 70 ry » - - "8 LR A s ¢ R IR TR 4 (S, LRI A Of) ety el
e, R R N S N A S A S A U D 2 RS e 3O .. LR TR XM N NN R X ML A




*Adod e annbas nok $£ 'SYILN 23 p4R2 siyy vingay| ‘pajiw) 3se podas siyy jo sordo> w_n_m_irlag "Ado> e annbas nok $'SYILN 03 pied siyy uinyay| Paiiwy ase yodau miu wo_ saidod wi%:f(

ot PR
30U SBM ASNEY AYY 1N TDAISARRNS SI QUG LAY WALS WIBK i uotganpe, VR bR e S ueiiae e ‘ e L c Lt T e L - ” i e i
ﬁt (1@ ul U0E321paud prasiAuL ay) UBYL U3 jPws o 03 FutGy SPMog s ey P LR R R P Ry T T . ” o PR s S v . ’ - . VP -
15133539 SnOdSIA J31Raub Biudy Due) Junrssaud LELTLuL SaMO T T s WSy B,y oy L0 g Byl e et L temeen
01 puno; OS2 SeM 3unssoud [RUIIIU]  TUNOLARYSG SLUL w1P aa O3 feenc o e, Cape O Ciee
JAQUNU. OB MO IR DASUNOUOLE  Auow  yPmM QULL UOLTiSUPLL iy + - wm -u} Y Lueput [ TSI IV el Ve
30 1384,0 3y 44034y uafe(-4LePunog Yo jualsisuwd JAUUPL B UL TaunSNAE gy Low HE gy om ackay o, ¢ M
01 puno,; sem Auepunog FLESEDIE L lUSWYIRI3D, Ayl WOy B S L e Ay (:.:«,,.i ’ e
TS133443 SNODSIA 03 9D Sem  x0peuPH UJBWRAN UOA, BUT IPLY BN, sER LT Y e e GUPWOOh A au) po ' o
U910 SL 323 D Syl TA10auy [1dS LAy WOJy KLPDunGy UOL3ISuRs) dul Ju IR LAAL ey ok fCtau g ot T
4940 -£I1RPUNOY BUY UAAMIAG SPPL SPM US| Leduwoy ¥ ey I I X P T S SV TLA Jte et
AZtwiYPu 01 &|GLSS00 SB MOf S@ 349y Auom $Iunssaud ity Hp PUE ' p e L0 Aaam Bast e fup abgaem et s
AL TAQN] 4D0uS K120 (3Asadhy un BI*OT SYILH BUY ul S3udLiLIAtye hulywpua- 1y W [T aetu il i
UIPW AAeM-I0US - 1UdDtOuL 40 aBues P 43AD Bul|

UOLILSURLL o Py P EM- Ty = el

Ccoad QUL 40 uULtdy

00 oM

S

Siudwiuedrs ON1 Alseay  ruafey Kuepunog padnpui-

“Law

. fielPlaiLtary
3 - Sl gt ae Cibey . X o P N -
v TI0US BUT 4O ATUAN( UL IYY ub SLsRydie e SETETI AREIP R .1> - TE o pren i Fabyg # Gl e oore wE e o
PR JLR Ui MO, £UPUOLIRISODNISA UL ALPUROG WO L1LSURI] { A/ R O T B It T B A A o o ' .
. ] Ui e oG T G FTuuala, Syt Ty
uuop ‘asiaaum (] 962 CON SION (Rdiuuda) Syl ‘ ,
L HOPEJIRY yuPbwheN UOA |ty
XOPPARC uuBUAN UDA, "4 v e ¢ LIF :
B R ASewn i lautan L sant - Naged 2@ - ALRIGnGY FaBUGi IR L ER0N tC
SIUMBINSEIU I1JIM0ISIBW] TG SKOL ANI=AIONS Ty SIId4e sake |- Aoepurog £ieuo 1L EIS00N '§ SIusLeSnSPAL i ldeatatu ] T . . : ;
UOLILSUPSY UOLIIB|au-udey-03-Jp(nbay "7

i Aleye CLbuGLLEEORnasS, ot
. U0 LT SuP FISRE JRATL N LPUG L, ELLOnna
SUOLIIA(4AS BABK- 1IOUS ANt L QO Auku0l RISOPNAS * UOLTiSUPLS} WO LB A=y B U

i

UUO ‘43| Buym

SR

R PN AT Sy
@ AGYONODE NCILISNYGL NGILDTT034 HOWH 6L HYONTDI ML 5T NSO PO R I DU
. ~ N GG Wy CEPRUET COILPLul CMELASUMDE 388530 vidd ) N0 e
916 HEW ‘epeup) *oruriug MILASUMD( CIARITS ULISY4N0 GR6Y foyl ,# /:,ﬂ.kn CORUSLLAY U0, 831 13Sul C036040; O A1ISSer. .y
(SYILN) $81DPNIG adedsouay 404 aintyjsu) T0I8010) 4o K3issaniup Syl v
Y47 TON RION (PDLULDE) Sy
967 ON ION |PILUYddl Syiln 47 N PI0N i i

"Ado> e asinbai nok 1 ‘SVYILM ©3 pied siyy uinjay) ‘pajiwy ase podas siyy jo saidod ajqejieay | Adod e aunbai nok 41 ‘|| M 03 pied sIyY W33y "pajiwy ase oday siyy fo sa1dod 3|qejieay

CparpbilitErar fiutnosou
cpatebLysaruy £ubnosous 10U SPM 3SNPY aul 4Ny ‘pAISARLAS i yf1ay WAIS WP ui UOLIINPAL AUl U0 UCEIPUR MA@ Uy CSIuduieeCte
q0U Sem asned ayi 1ng "paisabibns su ubiau WIS UDPW UL UOLIDNPAJS AYT 40, UOLIPUP[AXA Uy "SIuAMLJICKD MW (1P LU Y0LI2(pAId DIDSLAUL 3UY UPUL JO] [PIS 30 €3 UMD, SO UTium 0835 G PR 3U3 40 JUf 14U AUl pesr
AW LR UL UOLIILPAJD DIOSLAUL 3UL UEUI Ja|(BwS 3] 0 PUNOS sem udiym ‘UBTS uIW 9ud 4O Iublay Byl padnpas (5308339 SnOdSLA Ja3easdh AIuBY PUR) FUNSSAIE JPLILUL SAMO 1 Ty UL BUL 40 Subiay AUl edus’
{51234J3 SNODSLA 4310346 3JU3Y PuB) BUNSSAUD [PLILUL JIMOT  “MW Ut WIS UK Ayl 40 IYELIy Ayl @uangjui 01 PuNO; 0S(P sem Airssasd [BL3iu] CINOLAPUSY S(U3 ULE|dva C S1 (apow b pue o s
01 Dunoy O0s(® Sem 3unssasd (eLiiu] cJnotaeyaq Siyl uiepdxd ©3 pasodosd su (Apow B pue ‘{7 > Sy) Jagunu udew MOy 3P padurcundd  Au0w SBM QUL UDLGISUBJT N ¢ Ll U0 U3FB] KLPpUNOQ | |EMPLe
J3qUnU  YoBw MC| 30 DPIduNOuDJd BJ0W SEM JUL| UOLIILSUPIY HW e« Y Ul ue Jsafe| Kuepunoq | |empua 3yl 40 15A44e U] *A208U1 JAKE|-LIPPUNOY U LM JUSJSISUON JBUUBL P Ui ‘aLinssald [BLTHUL w1 dOUp B usim BCPasty.
4O 123443 au|  ~£403y) Jake|-AIRpUN0Q GIiM JUIISISUOD SAUURL P UL ‘AUNSSAIY (Piltul ui dOUD @ ylim 9SPAIIUL 01 PUNDY SEM FUPPURGY MOLJAI(JD | QUBWUILIAD, BUL WO UL UGLIISUPSL HW v+ HR AUT 40 uCLIVIAAL au,
07 puno; sem AJBPUNOQ UOLJIILID , TUSLYDIRIIP, Yl woudy AUL| UOLILSURJY M <=+ HH 3ul 0 uOLIPLAIP Ju) *$310a34a SNOISIA 03 AN SeM  ¥OPRURE uUPWLNAN UOA, Y3 3PUT PUNG, Sem 1 * L XOPPIRE LUPIINAN unA, ra| ok
©53133449 SNOISLA 03 3Np Sem ,XO0pesed wuURWNAN UOA, Aul kY] PUND) SEM 3| ° xOPPJRC UUBLNAN UGA, 3ul Pa|(ed US40 SL @DUAIBLIID Siul TAJ0AYT PLISLALE WOU) AUPBUNDQ UOLIISUPIY a8yl 40 LOLIPLABL Ay PuP *vsauve L]
U340 SL IDUAIAYSLP S1yl  ‘KI03Y1 DPIOSIAUL WUy KJRPUNDQ UOLTLSUBJT AYl ;O UDLIPLABP dul PUE *SSBUNIILY 42£0[-A40PUNOG AU UYIMIRG APPU SBM UDSLURAWED ¥ *Pgx O] 01 Faw po0 woay paburs DU S3I@1ie wruvtcgs
Jafe|-£iepunog 3yl uIaMIaq apeuw Sem UGSLIRdWOD Yy "BdY 00T O3 ©d¥ ©'N woJj; pabues DUB 5333448 SNOISIA AZLWLYPY 01 A(G1SS00 SB M| SB 103Y AUGK SAINSSAIC [PLTIL]  C LR BUE Cogp t.op toh BuBR PASH 88t a0 am
ztwixew 03 3(G1SS0d S8 MO| Se 303y Bu3mM 53unSSIUd [RLILU]  *,RE PUR ‘it ‘.Gb ‘.2y 943m pasn sa|fue afipam Aup teqnp 30uS A3100]2A3ACAK w2 PG SYIIR P wi Siuamisatra Bui3anpuot G §5G S Sk > 101 et
34l *3agn] AD0US AI1D0|3AIAAN WD RIxOT SYILA B4l Ui Sjudwiuadxa BulIdnpuod £Q ¢°g > Sy > 1T Jaqurnu U2PW AAPM-XDOUS - JUBDLOUL 40 AOUPS B J3AD AUT, UDLIISUPJY AW «+ HY QU 30 uOLFAL AUl wL PATICHUC s
YOPW BABM-XD0YS -UAPLOUL JO 3BUPJ B UIAD JuL| UOLILSUPJ] HW ¢ °* oAy BuUY 0 uo1has Byl YL PaAIINPUND UM Sjuduitiadxd NGL AtaPaN  *J3FP| AUPPUNOYg PaEdNDUL=-204S AuT J0 ATUAR| Ul Au) ud SisPydua yiam ‘paceloisenng
S1udwLJadxd (01 A1JeaN  “J3key AJPDUNOQ DPAINDUL-YIOUS BUF JO AIUAN|JUL Y] U0 SISPYdWA ylim ‘pajebiisanul SPM JIP L MO, AUPUN1IP3S0PRASA Ul AIPPUNOY UOLTLSUPJY (MW UC1233(43s UiPw 03 (pu] Jeirfa. e
SeM Jie Ul MOty KJeuo13e1s0pnasd ut AJppunog UOLIISURJY (M) WOL1ID3|jas ydew ©3 (¥y)} se nbau ayy
uuor taajaauym t} QG7 TON Q30N (FYluudd] Sy, o
uyopr 433U "1l 942 “ON 930N {PILuydal Syiin "1
LYOPPURT UUBLIBAN UOA |t
2 XOPPJRA yupWnaN UOA. "g SIUAMEIUNSEAL T1J1AN0ID JUAJU] ‘G SMC 1y AUn}-YI0uUS Tt $379149 J3kp - Aifpunog AJPUOLIFINUON ¢
SIUBWIINSPAW D1JIW0JIJ43IU] *G  SMO[) BQGNI-yD04S “p  SIDBY8 J3kej-Asepunog AseuniiPIsuoy °f UGLIESUPSL UM LIDA{3U-UDPR-0F-JF (NfAy ¢ SUOLIIA[4AJ AreM-wI0ES AnNBL[GO F1PU0LIFISCP as, « ]
UOLILSURJY LOLIII| JAJ-UDeW-01-JR|NBAY 7 SUOL}IA| 43U 3ABM- xD0uS BNb1 |0 AJPUD|IRPISOPNASH *]
UYOL ‘o e
wyor ‘Jajoaym

419 N1 M0Y4 AIYNOTIYISOGRISH NI 4 iavd
WGIL337438 HOWW Gl AW NS T THL 40 NOTLVOTISIANT DIA] WOn3AINT LY

ERETY

A4YONNG

RGNS
9 NOLLISNYAL

ASVONADT KCTLISNYSL NGLID3T434 307k

1 CANR

QG Hfw ‘PLEURT TULUPIUN ‘MALASUMD( '3RAUTG WLJAIND CTat

G1G Hfw "PPRURT ‘QLUPIU( ‘MALASUMO ' 1AAUIG ULIAJN C2RY (SYTIN] SPIPrI§ APdsousay 20y 43n313%u] Cou0s0r 50 A3isaac tar
(Sy11n) s2ipnig adedspJay JO) aINILISU] *0IUOI0Y 40 K1L1SIBA LU

9G¢ "ON #30N [P2LUYDR) Sy 10
€q2 CON @I0N [ed1uunaj Sylln

~ Y ey e i - g
B IR O o Y v e e - RS e 2 o o o Lol g% o 4 o4 . d TS ¥
SESSEES | AN s SORRIE CRRRRAR s S IR LI Y LSS M




v g8 B bl & st T Ly g Bl R T : L —— rxY

b

- / W
~ —_—

vy :
PR o2
"% j
"0,
W
i N
b .
R " < / " 7 v
FLS. e g
&) -
o u
[, ;
% 238
Ly A Ol
4 %
é ,:_'; A\ :
-

.

;'I'.
2

o

VT

-
v
B

- ey
3 Tl TP
P M - B "L

!

-

Qe
b ofin A
Iy XL

om
B

Aurdy
i E-_E :

a VX
Lagd h ".‘
b ") ut ]
*} LI
: ',;,l e
Dx -
L A
B ! iy
! o
‘»{ bJ,‘v
e o4
- )
S R
s b
, r»‘,g-
: * i F >
: g
0 ‘l >
“~ et
! 4 %"“‘ ‘,F\
> 9
-\ ) " ]
n"-. !“\ ]
; \f' / LR
gl - ity

i
!
Pa

I B e
v "/" .I‘l ""'
P L ee b,
p e Ty R

TEN o 0
:5‘.‘ [yt
! )
. i
: 8
(} i
) ‘. ) v"s
Wy’ Bl

G

TR y...
\ h

l 5- "
W va'ﬁa gt ’i' 2 A:l‘ah'o' 'l‘... A s'. A n' ey

9% 0 o", ‘:.5,'\' Y :.; \ A‘l u }E‘ :"‘l ¢
S 2’ﬁ.-‘-. o

) o e
LML R IO N MU O ﬁ:?t‘\ ERION




